红曲米促进糖尿病大鼠伤口愈合:强调其前胶原蛋白和血管生成活性

IF 3 Q2 PHARMACOLOGY & PHARMACY
Abdulmohsin J. Alamoudi, Basma G. Eid, Ashraf B. Abdel-Naim, Esam M. Aboubakr
{"title":"红曲米促进糖尿病大鼠伤口愈合:强调其前胶原蛋白和血管生成活性","authors":"Abdulmohsin J. Alamoudi,&nbsp;Basma G. Eid,&nbsp;Ashraf B. Abdel-Naim,&nbsp;Esam M. Aboubakr","doi":"10.1186/s43094-025-00839-x","DOIUrl":null,"url":null,"abstract":"<div><p>Delayed wound healing is a challenge, especially in patients with diabetes mellitus. Red yeast rice (RYR) is a traditional medicine with known uses in several ailments including stasis of blood and weakness of limbs. Experimentally, it was shown to exhibit antidiabetic and anti-inflammatory activities. This study aimed to evaluate the potential of RYR to promote healing of excised skin in diabetic rats. Our data indicated that application RYR in a hydroxypropyl methylcellulose-based gel (5 or 10%) significantly expedited wound retraction. This was associated by significant antioxidant activities of RYR as evidenced by decreased accumulation of malondialdehyde, and enhanced superoxide dismutase and catalase activities in skin tissues. Further, RYR significantly decreased the immune expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (TNF-α). RYR enriched skin content of hydroxyproline and up-regulated mRNA expression of COL 1A1. Also, RYR-treated rats showed higher expression of platelet-derived growth factor B (PDGF-B), vascular endothelial growth factor A (VEGF-A) and transforming growth factor-beta (TGF-β) as compared to untreated control rats. In conclusion, RYR expedites wound healing of diabetic rats. This is at least in part, due to its ability to act as an antioxidant, reduce inflammation, promote collagen production, and support the formation of new blood vessels.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00839-x","citationCount":"0","resultStr":"{\"title\":\"Red yeast rice expedites wound healing in diabetic rats: emphasis on its pro-collagen and angiogenic activities\",\"authors\":\"Abdulmohsin J. Alamoudi,&nbsp;Basma G. Eid,&nbsp;Ashraf B. Abdel-Naim,&nbsp;Esam M. Aboubakr\",\"doi\":\"10.1186/s43094-025-00839-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Delayed wound healing is a challenge, especially in patients with diabetes mellitus. Red yeast rice (RYR) is a traditional medicine with known uses in several ailments including stasis of blood and weakness of limbs. Experimentally, it was shown to exhibit antidiabetic and anti-inflammatory activities. This study aimed to evaluate the potential of RYR to promote healing of excised skin in diabetic rats. Our data indicated that application RYR in a hydroxypropyl methylcellulose-based gel (5 or 10%) significantly expedited wound retraction. This was associated by significant antioxidant activities of RYR as evidenced by decreased accumulation of malondialdehyde, and enhanced superoxide dismutase and catalase activities in skin tissues. Further, RYR significantly decreased the immune expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (TNF-α). RYR enriched skin content of hydroxyproline and up-regulated mRNA expression of COL 1A1. Also, RYR-treated rats showed higher expression of platelet-derived growth factor B (PDGF-B), vascular endothelial growth factor A (VEGF-A) and transforming growth factor-beta (TGF-β) as compared to untreated control rats. In conclusion, RYR expedites wound healing of diabetic rats. This is at least in part, due to its ability to act as an antioxidant, reduce inflammation, promote collagen production, and support the formation of new blood vessels.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00839-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-025-00839-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00839-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

伤口延迟愈合是一个挑战,特别是对糖尿病患者。红曲米(RYR)是一种传统药物,已知用于几种疾病,包括瘀血和四肢无力。实验表明,它具有抗糖尿病和抗炎活性。本研究旨在评估RYR促进糖尿病大鼠切除皮肤愈合的潜力。我们的数据表明,在羟丙基甲基纤维素凝胶中应用RYR(5%或10%)可显著加快伤口收缩。这与RYR显著的抗氧化活性有关,如丙二醛积累减少,皮肤组织中超氧化物歧化酶和过氧化氢酶活性增强。此外,RYR显著降低核因子κB (NF-κB)和肿瘤坏死因子-α (TNF-α)的免疫表达。RYR增加皮肤羟脯氨酸含量,上调COL 1A1 mRNA表达。此外,ryr处理大鼠的血小板衍生生长因子B (PDGF-B)、血管内皮生长因子A (VEGF-A)和转化生长因子β (TGF-β)的表达也高于未处理的对照组大鼠。结论:RYR促进糖尿病大鼠创面愈合。这至少在一定程度上是由于它具有抗氧化剂、减少炎症、促进胶原蛋白生成和支持新血管形成的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Red yeast rice expedites wound healing in diabetic rats: emphasis on its pro-collagen and angiogenic activities

Delayed wound healing is a challenge, especially in patients with diabetes mellitus. Red yeast rice (RYR) is a traditional medicine with known uses in several ailments including stasis of blood and weakness of limbs. Experimentally, it was shown to exhibit antidiabetic and anti-inflammatory activities. This study aimed to evaluate the potential of RYR to promote healing of excised skin in diabetic rats. Our data indicated that application RYR in a hydroxypropyl methylcellulose-based gel (5 or 10%) significantly expedited wound retraction. This was associated by significant antioxidant activities of RYR as evidenced by decreased accumulation of malondialdehyde, and enhanced superoxide dismutase and catalase activities in skin tissues. Further, RYR significantly decreased the immune expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (TNF-α). RYR enriched skin content of hydroxyproline and up-regulated mRNA expression of COL 1A1. Also, RYR-treated rats showed higher expression of platelet-derived growth factor B (PDGF-B), vascular endothelial growth factor A (VEGF-A) and transforming growth factor-beta (TGF-β) as compared to untreated control rats. In conclusion, RYR expedites wound healing of diabetic rats. This is at least in part, due to its ability to act as an antioxidant, reduce inflammation, promote collagen production, and support the formation of new blood vessels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信