Koranat Pattarakunnan, Joel L. Galos, Raj Das, Adam S. Best, Ilias L. Kyratzis
{"title":"锂离子聚合物储能夹层复合材料电池的热性能研究","authors":"Koranat Pattarakunnan, Joel L. Galos, Raj Das, Adam S. Best, Ilias L. Kyratzis","doi":"10.1007/s10443-025-10347-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the heating (i.e. discharging) of Lithium-ion (Li-ion) polymer batteries (e.g. pouch and 18650 cells) embedded in sandwich composites made of carbon fibre laminate facesheets and polymer foam cores (Polyvinyl Chloride or PVC, Polyethylene Terephthalate or PET). The effects of facesheet thickness, foam core thickness and density, and battery type and orientation on the heating of sandwich composites are systematically investigated. Heat can be rapidly dissipated from sandwich composites when the Li-ion polymer battery has a large area of contact with the carbon fibre facesheets. However, rapid internal heating, potentially leading to thermal runaway and fire, may occur when the battery is fully embedded within the foam core and physically separated from the facesheets. The optimal foam core thickness to prevent overheating can be predicted using the numerical thermal design maps. This study builds on our previous work which investigated the thermal performance of monolithic carbon fibre laminates.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 4","pages":"1365 - 1397"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Performance of Energy Storage Sandwich Composites Containing Lithium-Ion Polymer Batteries\",\"authors\":\"Koranat Pattarakunnan, Joel L. Galos, Raj Das, Adam S. Best, Ilias L. Kyratzis\",\"doi\":\"10.1007/s10443-025-10347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the heating (i.e. discharging) of Lithium-ion (Li-ion) polymer batteries (e.g. pouch and 18650 cells) embedded in sandwich composites made of carbon fibre laminate facesheets and polymer foam cores (Polyvinyl Chloride or PVC, Polyethylene Terephthalate or PET). The effects of facesheet thickness, foam core thickness and density, and battery type and orientation on the heating of sandwich composites are systematically investigated. Heat can be rapidly dissipated from sandwich composites when the Li-ion polymer battery has a large area of contact with the carbon fibre facesheets. However, rapid internal heating, potentially leading to thermal runaway and fire, may occur when the battery is fully embedded within the foam core and physically separated from the facesheets. The optimal foam core thickness to prevent overheating can be predicted using the numerical thermal design maps. This study builds on our previous work which investigated the thermal performance of monolithic carbon fibre laminates.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"32 4\",\"pages\":\"1365 - 1397\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-025-10347-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10347-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Thermal Performance of Energy Storage Sandwich Composites Containing Lithium-Ion Polymer Batteries
This study investigates the heating (i.e. discharging) of Lithium-ion (Li-ion) polymer batteries (e.g. pouch and 18650 cells) embedded in sandwich composites made of carbon fibre laminate facesheets and polymer foam cores (Polyvinyl Chloride or PVC, Polyethylene Terephthalate or PET). The effects of facesheet thickness, foam core thickness and density, and battery type and orientation on the heating of sandwich composites are systematically investigated. Heat can be rapidly dissipated from sandwich composites when the Li-ion polymer battery has a large area of contact with the carbon fibre facesheets. However, rapid internal heating, potentially leading to thermal runaway and fire, may occur when the battery is fully embedded within the foam core and physically separated from the facesheets. The optimal foam core thickness to prevent overheating can be predicted using the numerical thermal design maps. This study builds on our previous work which investigated the thermal performance of monolithic carbon fibre laminates.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.