磁场引导中空介孔磁铁矿纳米颗粒增强声动力治疗

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bin Li, Jing-Kai Cheng, Jie-Ling Qin, Yi-Qing Zeng, Tao Zhang
{"title":"磁场引导中空介孔磁铁矿纳米颗粒增强声动力治疗","authors":"Bin Li,&nbsp;Jing-Kai Cheng,&nbsp;Jie-Ling Qin,&nbsp;Yi-Qing Zeng,&nbsp;Tao Zhang","doi":"10.1007/s12598-025-03473-x","DOIUrl":null,"url":null,"abstract":"<div><p>Pancreatic cancer is highly vulnerable to ferroptosis. Consequently, treatments that target pancreatic cancer through ferroptosis induction demonstrate immense potential for enhancing therapeutic outcomes in this condition. In the present study, we synthesized hollow mesoporous iron oxide nanoparticles (MHFe) using a hydrothermal method. These nanoparticles retained the superparamagnetic properties of iron oxide and its Fenton reaction-catalyzing ability. Meanwhile, they also showed superior drug-loading capacity compared to traditional ferric oxide nanoparticles due to their hollow and mesoporous structure. Under the guidance of a magnetic field, these nanoparticles could accumulate in tumor cells. Following the incorporation of Ce6, a sonosensitizer, the Ce6@MHFe system could generate singlet oxygen under ultrasound treatment to promote tumor cell apoptosis while simultaneously producing hydroxyl radicals through the enhanced Fenton effect of MHFe. This promoted ferroptosis in pancreatic cancer cells, achieving combined therapeutic effects. In vivo experiments confirmed the good biocompatibility of Ce6@MHFe and demonstrated that the nanoparticles could effectively kill tumor cells under magnetic targeting and ultrasound irradiation, thereby inhibiting tumor growth. The findings suggested that these hollow mesoporous iron oxide nanoparticles (Ce6@MHFe) with a high drug-loading capacity, tumor retention ability, and potential for combination therapy have potential for the treatment of various malignancies, including pancreatic cancer.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7550 - 7562"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field-guided hollow mesoporous magnetite nanoparticles for enhanced sonodynamic therapy\",\"authors\":\"Bin Li,&nbsp;Jing-Kai Cheng,&nbsp;Jie-Ling Qin,&nbsp;Yi-Qing Zeng,&nbsp;Tao Zhang\",\"doi\":\"10.1007/s12598-025-03473-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pancreatic cancer is highly vulnerable to ferroptosis. Consequently, treatments that target pancreatic cancer through ferroptosis induction demonstrate immense potential for enhancing therapeutic outcomes in this condition. In the present study, we synthesized hollow mesoporous iron oxide nanoparticles (MHFe) using a hydrothermal method. These nanoparticles retained the superparamagnetic properties of iron oxide and its Fenton reaction-catalyzing ability. Meanwhile, they also showed superior drug-loading capacity compared to traditional ferric oxide nanoparticles due to their hollow and mesoporous structure. Under the guidance of a magnetic field, these nanoparticles could accumulate in tumor cells. Following the incorporation of Ce6, a sonosensitizer, the Ce6@MHFe system could generate singlet oxygen under ultrasound treatment to promote tumor cell apoptosis while simultaneously producing hydroxyl radicals through the enhanced Fenton effect of MHFe. This promoted ferroptosis in pancreatic cancer cells, achieving combined therapeutic effects. In vivo experiments confirmed the good biocompatibility of Ce6@MHFe and demonstrated that the nanoparticles could effectively kill tumor cells under magnetic targeting and ultrasound irradiation, thereby inhibiting tumor growth. The findings suggested that these hollow mesoporous iron oxide nanoparticles (Ce6@MHFe) with a high drug-loading capacity, tumor retention ability, and potential for combination therapy have potential for the treatment of various malignancies, including pancreatic cancer.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 10\",\"pages\":\"7550 - 7562\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03473-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03473-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺癌极易发生铁下垂。因此,通过诱导铁下垂靶向胰腺癌的治疗显示出在这种情况下提高治疗结果的巨大潜力。在本研究中,我们采用水热法制备了中空介孔氧化铁纳米颗粒(MHFe)。这些纳米颗粒保留了氧化铁的超顺磁性和催化芬顿反应的能力。同时,由于它们的中空和介孔结构,与传统的氧化铁纳米颗粒相比,它们也表现出了更好的载药能力。在磁场的引导下,这些纳米粒子可以在肿瘤细胞中积累。加入超声敏化剂Ce6后,Ce6@MHFe系统在超声处理下产生单线态氧,促进肿瘤细胞凋亡,同时通过MHFe的芬顿效应增强产生羟基自由基。这促进了胰腺癌细胞的铁下垂,实现了联合治疗效果。体内实验证实Ce6@MHFe具有良好的生物相容性,并证明纳米颗粒在磁靶向和超声照射下能有效杀伤肿瘤细胞,从而抑制肿瘤生长。研究结果表明,这些中空介孔氧化铁纳米颗粒(Ce6@MHFe)具有高载药能力、肿瘤保留能力和联合治疗的潜力,具有治疗包括胰腺癌在内的各种恶性肿瘤的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic field-guided hollow mesoporous magnetite nanoparticles for enhanced sonodynamic therapy

Pancreatic cancer is highly vulnerable to ferroptosis. Consequently, treatments that target pancreatic cancer through ferroptosis induction demonstrate immense potential for enhancing therapeutic outcomes in this condition. In the present study, we synthesized hollow mesoporous iron oxide nanoparticles (MHFe) using a hydrothermal method. These nanoparticles retained the superparamagnetic properties of iron oxide and its Fenton reaction-catalyzing ability. Meanwhile, they also showed superior drug-loading capacity compared to traditional ferric oxide nanoparticles due to their hollow and mesoporous structure. Under the guidance of a magnetic field, these nanoparticles could accumulate in tumor cells. Following the incorporation of Ce6, a sonosensitizer, the Ce6@MHFe system could generate singlet oxygen under ultrasound treatment to promote tumor cell apoptosis while simultaneously producing hydroxyl radicals through the enhanced Fenton effect of MHFe. This promoted ferroptosis in pancreatic cancer cells, achieving combined therapeutic effects. In vivo experiments confirmed the good biocompatibility of Ce6@MHFe and demonstrated that the nanoparticles could effectively kill tumor cells under magnetic targeting and ultrasound irradiation, thereby inhibiting tumor growth. The findings suggested that these hollow mesoporous iron oxide nanoparticles (Ce6@MHFe) with a high drug-loading capacity, tumor retention ability, and potential for combination therapy have potential for the treatment of various malignancies, including pancreatic cancer.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信