甲烷非热等离子体驱动干重整:电子能量输入功率耦合机理和催化剂设计准则

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Minghai Shen, Wei Guo, Lige Tong, Li Wang, Paul K. Chu, Sibudjing Kawi, Yulong Ding
{"title":"甲烷非热等离子体驱动干重整:电子能量输入功率耦合机理和催化剂设计准则","authors":"Minghai Shen,&nbsp;Wei Guo,&nbsp;Lige Tong,&nbsp;Li Wang,&nbsp;Paul K. Chu,&nbsp;Sibudjing Kawi,&nbsp;Yulong Ding","doi":"10.1007/s11705-025-2596-4","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric barrier discharge plasma-driven dry reforming of methane is a promising technology for syngas production. However, plasma involves complex chemical reaction pathways, non-thermal equilibrium kinetic characteristics, and interactions with catalysts, which together affect the catalytic efficiency of the dielectric-barrier plasma driven dry reforming of methane reaction and constitute its main technical challenges. This study systematically investigates the effect of critical parameters-including reactor dimensions, input power, gas flow rate, gas composition, and catalyst type-on CH<sub>4</sub> and CO<sub>2</sub> conversion as well as syngas selectivity. Through thermodynamic and kinetic analysis, we elucidate the stepwise evolution mechanism of CH<sub>4</sub>/CO<sub>2</sub> reactions under low-temperature plasma conditions. Notably, we incorporated the power law relationship between electron energy and input power into the thermodynamic model, thereby quantitatively revealing for the first time the regulatory effect of input power on the reaction path. This study provides valuable design principles to enhance the efficiency and industrial applicability of dielectric-barrier plasma driven dry reforming of methane processes.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-025-2596-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-thermal plasma driven dry reforming of methane: electron energy-input power coupling mechanism and catalyst design criteria\",\"authors\":\"Minghai Shen,&nbsp;Wei Guo,&nbsp;Lige Tong,&nbsp;Li Wang,&nbsp;Paul K. Chu,&nbsp;Sibudjing Kawi,&nbsp;Yulong Ding\",\"doi\":\"10.1007/s11705-025-2596-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dielectric barrier discharge plasma-driven dry reforming of methane is a promising technology for syngas production. However, plasma involves complex chemical reaction pathways, non-thermal equilibrium kinetic characteristics, and interactions with catalysts, which together affect the catalytic efficiency of the dielectric-barrier plasma driven dry reforming of methane reaction and constitute its main technical challenges. This study systematically investigates the effect of critical parameters-including reactor dimensions, input power, gas flow rate, gas composition, and catalyst type-on CH<sub>4</sub> and CO<sub>2</sub> conversion as well as syngas selectivity. Through thermodynamic and kinetic analysis, we elucidate the stepwise evolution mechanism of CH<sub>4</sub>/CO<sub>2</sub> reactions under low-temperature plasma conditions. Notably, we incorporated the power law relationship between electron energy and input power into the thermodynamic model, thereby quantitatively revealing for the first time the regulatory effect of input power on the reaction path. This study provides valuable design principles to enhance the efficiency and industrial applicability of dielectric-barrier plasma driven dry reforming of methane processes.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 9\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11705-025-2596-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2596-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2596-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

介质阻挡放电等离子体驱动甲烷干重整是一种很有前途的合成气生产技术。然而,等离子体涉及复杂的化学反应途径、非热平衡动力学特性以及与催化剂的相互作用,这些因素共同影响了介质阻挡等离子体驱动甲烷干重整反应的催化效率,构成了其主要的技术挑战。本研究系统地考察了反应器尺寸、输入功率、气体流速、气体成分和催化剂类型等关键参数对CH4和CO2转化率以及合成气选择性的影响。通过热力学和动力学分析,阐明了低温等离子体条件下CH4/CO2反应的逐步演化机理。值得注意的是,我们将电子能量与输入功率之间的幂律关系纳入热力学模型,从而首次定量揭示了输入功率对反应路径的调节作用。该研究为提高介质阻挡等离子体驱动甲烷干法重整的效率和工业适用性提供了有价值的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-thermal plasma driven dry reforming of methane: electron energy-input power coupling mechanism and catalyst design criteria

Dielectric barrier discharge plasma-driven dry reforming of methane is a promising technology for syngas production. However, plasma involves complex chemical reaction pathways, non-thermal equilibrium kinetic characteristics, and interactions with catalysts, which together affect the catalytic efficiency of the dielectric-barrier plasma driven dry reforming of methane reaction and constitute its main technical challenges. This study systematically investigates the effect of critical parameters-including reactor dimensions, input power, gas flow rate, gas composition, and catalyst type-on CH4 and CO2 conversion as well as syngas selectivity. Through thermodynamic and kinetic analysis, we elucidate the stepwise evolution mechanism of CH4/CO2 reactions under low-temperature plasma conditions. Notably, we incorporated the power law relationship between electron energy and input power into the thermodynamic model, thereby quantitatively revealing for the first time the regulatory effect of input power on the reaction path. This study provides valuable design principles to enhance the efficiency and industrial applicability of dielectric-barrier plasma driven dry reforming of methane processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信