{"title":"带涡线的理想流体三维流动(精确解)","authors":"A. A. Abrashkin","doi":"10.1007/s00021-025-00962-y","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional hydrodynamic equations of ideal incompressible fluid in Lagrangian form are considered. Their explicit solution is obtained. The trajectories of fluid particles are complex spatial curves depending on four frequencies. The vortex lines precess around the vertical axis. Their shape is determined by an arbitrary function depending on the axial Lagrangian coordinate. It is shown that the rotation axis is directed to the plane of vortex lines at some nonzero angle.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Flow of Ideal Fluid with Precessing Vortex Lines (Exact Solutions)\",\"authors\":\"A. A. Abrashkin\",\"doi\":\"10.1007/s00021-025-00962-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional hydrodynamic equations of ideal incompressible fluid in Lagrangian form are considered. Their explicit solution is obtained. The trajectories of fluid particles are complex spatial curves depending on four frequencies. The vortex lines precess around the vertical axis. Their shape is determined by an arbitrary function depending on the axial Lagrangian coordinate. It is shown that the rotation axis is directed to the plane of vortex lines at some nonzero angle.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00962-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00962-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Three-Dimensional Flow of Ideal Fluid with Precessing Vortex Lines (Exact Solutions)
Three-dimensional hydrodynamic equations of ideal incompressible fluid in Lagrangian form are considered. Their explicit solution is obtained. The trajectories of fluid particles are complex spatial curves depending on four frequencies. The vortex lines precess around the vertical axis. Their shape is determined by an arbitrary function depending on the axial Lagrangian coordinate. It is shown that the rotation axis is directed to the plane of vortex lines at some nonzero angle.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.