海森堡群中初始数据奇异的半线性抛物方程解的存在性

IF 0.9 3区 数学 Q1 MATHEMATICS
The Anh Bui, Kotaro Hisa
{"title":"海森堡群中初始数据奇异的半线性抛物方程解的存在性","authors":"The Anh Bui,&nbsp;Kotaro Hisa","doi":"10.1007/s10231-024-01539-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we obtain necessary conditions and sufficient conditions on the initial data for the solvability of fractional semilinear heat equations with power nonlinearities in the Heisenberg group <span>\\(\\mathbb {H}^N\\)</span>. Using these conditions, we can prove that <span>\\(1+2/Q\\)</span> separates the ranges of exponents of nonlinearities for the global-in-time solvability of the Cauchy problem (so-called the Fujita-exponent), where <span>\\(Q=2N+2\\)</span> is the homogeneous dimension of <span>\\(\\mathbb {H}^N\\)</span>, and identify the optimal strength of the singularity of the initial data for the local-in-time solvability. Furthermore, our conditions lead sharp estimates of the life span of solutions with nonnegative initial data having a polynomial decay at the space infinity.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1561 - 1601"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions semilinear parabolic equations with singular initial data in the Heisenberg group\",\"authors\":\"The Anh Bui,&nbsp;Kotaro Hisa\",\"doi\":\"10.1007/s10231-024-01539-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we obtain necessary conditions and sufficient conditions on the initial data for the solvability of fractional semilinear heat equations with power nonlinearities in the Heisenberg group <span>\\\\(\\\\mathbb {H}^N\\\\)</span>. Using these conditions, we can prove that <span>\\\\(1+2/Q\\\\)</span> separates the ranges of exponents of nonlinearities for the global-in-time solvability of the Cauchy problem (so-called the Fujita-exponent), where <span>\\\\(Q=2N+2\\\\)</span> is the homogeneous dimension of <span>\\\\(\\\\mathbb {H}^N\\\\)</span>, and identify the optimal strength of the singularity of the initial data for the local-in-time solvability. Furthermore, our conditions lead sharp estimates of the life span of solutions with nonnegative initial data having a polynomial decay at the space infinity.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1561 - 1601\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01539-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01539-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Heisenberg群中具有幂非线性的分数阶半线性热方程初始数据可解的充分必要条件\(\mathbb {H}^N\)。利用这些条件,我们可以证明\(1+2/Q\)分离了柯西问题全局实时可解性的非线性指数的范围(所谓的fujita指数),其中\(Q=2N+2\)是\(\mathbb {H}^N\)的齐次维,并确定了初始数据的奇异性的最优强度。此外,我们的条件导致具有多项式衰减的非负初始数据的解的寿命在空间无穷远的尖锐估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions semilinear parabolic equations with singular initial data in the Heisenberg group

In this paper we obtain necessary conditions and sufficient conditions on the initial data for the solvability of fractional semilinear heat equations with power nonlinearities in the Heisenberg group \(\mathbb {H}^N\). Using these conditions, we can prove that \(1+2/Q\) separates the ranges of exponents of nonlinearities for the global-in-time solvability of the Cauchy problem (so-called the Fujita-exponent), where \(Q=2N+2\) is the homogeneous dimension of \(\mathbb {H}^N\), and identify the optimal strength of the singularity of the initial data for the local-in-time solvability. Furthermore, our conditions lead sharp estimates of the life span of solutions with nonnegative initial data having a polynomial decay at the space infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信