太阳活动周期23中新出现双极活动区的贝叶斯模型

IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Mariano Poisson, Pascal Démoulin, Marcelo López Fuentes, Cristina H. Mandrini
{"title":"太阳活动周期23中新出现双极活动区的贝叶斯模型","authors":"Mariano Poisson,&nbsp;Pascal Démoulin,&nbsp;Marcelo López Fuentes,&nbsp;Cristina H. Mandrini","doi":"10.1007/s11207-025-02517-w","DOIUrl":null,"url":null,"abstract":"<div><p>Active regions (ARs) are the photospheric manifestations of emerging magnetic flux ropes (FRs) formed in the solar interior. We analyze the emergence of 126 bipolar ARs during Solar Cycle 23 using a flux rope model, whose parameters are inferred through a Bayesian inference method. This approach allows us to estimate key sub-photospheric properties of FRs. We find that the Bayesian method effectively captures the global magnetic characteristics of ARs, with discrepancies primarily arising in the later stages of emergence. We examine the ability of a flux-balanced FR model with a symmetric circular cross-section to reproduce polarity shapes during these late stages. Additionally, we analyze how the inclination of the FR legs provides insight into the emergence stage. We propose an improved method for estimating the separation of polarities, which decreases projection effects and flux distribution biases. Furthermore, we confirm a strong correlation between the AR flux and the distance between the main polarities, as well as the evolution of their separation speed. Finally, we identify a characteristic ratio between the thickness of the FR and its curvature radius, suggesting an underlying physical mechanism governing this ratio.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Modeling of Emerging Bipolar Active Regions from Solar Cycle 23\",\"authors\":\"Mariano Poisson,&nbsp;Pascal Démoulin,&nbsp;Marcelo López Fuentes,&nbsp;Cristina H. Mandrini\",\"doi\":\"10.1007/s11207-025-02517-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Active regions (ARs) are the photospheric manifestations of emerging magnetic flux ropes (FRs) formed in the solar interior. We analyze the emergence of 126 bipolar ARs during Solar Cycle 23 using a flux rope model, whose parameters are inferred through a Bayesian inference method. This approach allows us to estimate key sub-photospheric properties of FRs. We find that the Bayesian method effectively captures the global magnetic characteristics of ARs, with discrepancies primarily arising in the later stages of emergence. We examine the ability of a flux-balanced FR model with a symmetric circular cross-section to reproduce polarity shapes during these late stages. Additionally, we analyze how the inclination of the FR legs provides insight into the emergence stage. We propose an improved method for estimating the separation of polarities, which decreases projection effects and flux distribution biases. Furthermore, we confirm a strong correlation between the AR flux and the distance between the main polarities, as well as the evolution of their separation speed. Finally, we identify a characteristic ratio between the thickness of the FR and its curvature radius, suggesting an underlying physical mechanism governing this ratio.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 8\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02517-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02517-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

活跃区(ARs)是在太阳内部形成的新兴磁通绳(FRs)的光球表现。我们利用通量绳模型分析了第23太阳活动周期126个双极ar的出现,并通过贝叶斯推理方法推断了其参数。我们发现贝叶斯方法有效地捕获了ar的全局磁性特征,差异主要出现在出现的后期阶段。我们研究了具有对称圆形截面的通量平衡FR模型在这些后期阶段重现极性形状的能力。此外,我们分析了FR腿的倾角如何提供对出现阶段的洞察。我们提出了一种改进的估计极性分离的方法,减少了投影效应和通量分布偏差。此外,我们证实了AR通量与主极性之间的距离以及它们的分离速度的演变有很强的相关性。最后,我们确定了FR厚度与其曲率半径之间的特征比率,并提出了控制该比率的潜在物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Modeling of Emerging Bipolar Active Regions from Solar Cycle 23

Active regions (ARs) are the photospheric manifestations of emerging magnetic flux ropes (FRs) formed in the solar interior. We analyze the emergence of 126 bipolar ARs during Solar Cycle 23 using a flux rope model, whose parameters are inferred through a Bayesian inference method. This approach allows us to estimate key sub-photospheric properties of FRs. We find that the Bayesian method effectively captures the global magnetic characteristics of ARs, with discrepancies primarily arising in the later stages of emergence. We examine the ability of a flux-balanced FR model with a symmetric circular cross-section to reproduce polarity shapes during these late stages. Additionally, we analyze how the inclination of the FR legs provides insight into the emergence stage. We propose an improved method for estimating the separation of polarities, which decreases projection effects and flux distribution biases. Furthermore, we confirm a strong correlation between the AR flux and the distance between the main polarities, as well as the evolution of their separation speed. Finally, we identify a characteristic ratio between the thickness of the FR and its curvature radius, suggesting an underlying physical mechanism governing this ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信