层间膜复合膜正向渗透膜表面的理论研究

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Mahdi Hussainzadeh, Majid Peyravi
{"title":"层间膜复合膜正向渗透膜表面的理论研究","authors":"Mahdi Hussainzadeh,&nbsp;Majid Peyravi","doi":"10.1007/s11705-025-2564-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, an extensive study has focused on the effects of various factors associated with the membrane support layer such as the size of the pores, porosity, thickness, hydrophobicity, and hydrophilicity, through both theoretical and empirical approaches. Along with numerical and analytical modeling, these variables are described by various two- and three-dimensional models, which have also developed for these parameters and variables. For engineering the selective layer, different categories of materials based on various morphologies, dimensions, or porosity were used as interlayers. Regarding the interlayers, there are relatively inconsistent reports in the literature and publications, primarily due to a lack of research and modeling. By modeling the influence of interlayers in thin film composite membranes, an innovative insight could be provided for optimizing other membrane processes. As a result, this research emphasizes the modeling and discussion of interlayers and their performance, particularly in the forward osmosis process, where scientific data and modeling are lacking. In addition to discussing the funnel and gutter effect carried out by the interlayers present in all membrane processes, modeling the impacts of the interlayer in the forward osmosis process will provide novel perspectives that could influence other processes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical surface study of forward osmosis membranes by interlayering thin film composite membrane\",\"authors\":\"Mahdi Hussainzadeh,&nbsp;Majid Peyravi\",\"doi\":\"10.1007/s11705-025-2564-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, an extensive study has focused on the effects of various factors associated with the membrane support layer such as the size of the pores, porosity, thickness, hydrophobicity, and hydrophilicity, through both theoretical and empirical approaches. Along with numerical and analytical modeling, these variables are described by various two- and three-dimensional models, which have also developed for these parameters and variables. For engineering the selective layer, different categories of materials based on various morphologies, dimensions, or porosity were used as interlayers. Regarding the interlayers, there are relatively inconsistent reports in the literature and publications, primarily due to a lack of research and modeling. By modeling the influence of interlayers in thin film composite membranes, an innovative insight could be provided for optimizing other membrane processes. As a result, this research emphasizes the modeling and discussion of interlayers and their performance, particularly in the forward osmosis process, where scientific data and modeling are lacking. In addition to discussing the funnel and gutter effect carried out by the interlayers present in all membrane processes, modeling the impacts of the interlayer in the forward osmosis process will provide novel perspectives that could influence other processes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2564-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2564-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们从理论和实证两方面对膜支撑层的大小、孔隙度、厚度、疏水性、亲水性等因素的影响进行了广泛的研究。随着数值和解析建模,这些变量被描述为各种二维和三维模型,这些模型也为这些参数和变量发展。对于工程选择层,基于不同形态,尺寸或孔隙率的不同类别的材料被用作中间层。关于中间层,文献和出版物中的报道相对不一致,主要是由于缺乏研究和建模。通过模拟膜间层对薄膜复合膜的影响,可以为优化其他膜工艺提供创新的见解。因此,本研究强调对中间层及其性能的建模和讨论,特别是在正向渗透过程中,缺乏科学数据和建模。除了讨论所有膜过程中存在的中间层所产生的漏斗和沟槽效应外,对正向渗透过程中中间层的影响进行建模将为影响其他过程提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical surface study of forward osmosis membranes by interlayering thin film composite membrane

In recent years, an extensive study has focused on the effects of various factors associated with the membrane support layer such as the size of the pores, porosity, thickness, hydrophobicity, and hydrophilicity, through both theoretical and empirical approaches. Along with numerical and analytical modeling, these variables are described by various two- and three-dimensional models, which have also developed for these parameters and variables. For engineering the selective layer, different categories of materials based on various morphologies, dimensions, or porosity were used as interlayers. Regarding the interlayers, there are relatively inconsistent reports in the literature and publications, primarily due to a lack of research and modeling. By modeling the influence of interlayers in thin film composite membranes, an innovative insight could be provided for optimizing other membrane processes. As a result, this research emphasizes the modeling and discussion of interlayers and their performance, particularly in the forward osmosis process, where scientific data and modeling are lacking. In addition to discussing the funnel and gutter effect carried out by the interlayers present in all membrane processes, modeling the impacts of the interlayer in the forward osmosis process will provide novel perspectives that could influence other processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信