常曲率n维空间中谐波势和开普勒-库仑势的非厄米超对称分解

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Allagbé E. Dossou, Finagnon A. Dossa
{"title":"常曲率n维空间中谐波势和开普勒-库仑势的非厄米超对称分解","authors":"Allagbé E. Dossou,&nbsp;Finagnon A. Dossa","doi":"10.1007/s10773-025-06155-7","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a non-Hermitian supersymmetric factorization applied to harmonic and Kepler-Coulomb potentials, enhanced with an inverse-square term, in <i>N</i>-dimensional spaces of constant curvature. Constructed from a flat conformal metric, the obtained Hamiltonians offer a unified framework to treat spherical, hyperbolic and Euclidean geometries. The specificity of the approach lies in the introduction of non-adjoint scaling operators, which allow a natural generalization of supersymmetry in a non-Hermitian context. Spectral analysis reveals the decisive influence of curvature: in the harmonic case, it modifies the structure and distribution of levels, while for the Kepler-Coulomb potential, a negative curvature tends to weaken the bound states while a positive curvature strengthens their confinement. These results illustrate the fundamental role of geometry in quantum dynamics on curved spaces.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 10","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Hermitian Supersymmetric Factorization of Harmonic and Kepler-Coulomb Potentials in N-Dimensional Spaces of Constant Curvature\",\"authors\":\"Allagbé E. Dossou,&nbsp;Finagnon A. Dossa\",\"doi\":\"10.1007/s10773-025-06155-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a non-Hermitian supersymmetric factorization applied to harmonic and Kepler-Coulomb potentials, enhanced with an inverse-square term, in <i>N</i>-dimensional spaces of constant curvature. Constructed from a flat conformal metric, the obtained Hamiltonians offer a unified framework to treat spherical, hyperbolic and Euclidean geometries. The specificity of the approach lies in the introduction of non-adjoint scaling operators, which allow a natural generalization of supersymmetry in a non-Hermitian context. Spectral analysis reveals the decisive influence of curvature: in the harmonic case, it modifies the structure and distribution of levels, while for the Kepler-Coulomb potential, a negative curvature tends to weaken the bound states while a positive curvature strengthens their confinement. These results illustrate the fundamental role of geometry in quantum dynamics on curved spaces.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06155-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06155-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种非厄米超对称分解,应用于常曲率n维空间中的调和势和开普勒-库仑势,增强了一个反平方项。从平面共形度量出发,得到的哈密顿量为处理球面、双曲和欧几里得几何提供了一个统一的框架。该方法的特殊性在于引入了非伴随标度算子,它允许在非厄米上下文中对超对称进行自然推广。谱分析揭示了曲率的决定性影响:在谐波情况下,它改变了能级的结构和分布,而对于开普勒-库仑势,负曲率倾向于削弱束缚态,而正曲率倾向于加强束缚态。这些结果说明了几何在弯曲空间上的量子动力学中的基本作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Hermitian Supersymmetric Factorization of Harmonic and Kepler-Coulomb Potentials in N-Dimensional Spaces of Constant Curvature

We propose a non-Hermitian supersymmetric factorization applied to harmonic and Kepler-Coulomb potentials, enhanced with an inverse-square term, in N-dimensional spaces of constant curvature. Constructed from a flat conformal metric, the obtained Hamiltonians offer a unified framework to treat spherical, hyperbolic and Euclidean geometries. The specificity of the approach lies in the introduction of non-adjoint scaling operators, which allow a natural generalization of supersymmetry in a non-Hermitian context. Spectral analysis reveals the decisive influence of curvature: in the harmonic case, it modifies the structure and distribution of levels, while for the Kepler-Coulomb potential, a negative curvature tends to weaken the bound states while a positive curvature strengthens their confinement. These results illustrate the fundamental role of geometry in quantum dynamics on curved spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信