活动区域演化中的湍流时间路径与磁场多重分形

IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Valentina Abramenko
{"title":"活动区域演化中的湍流时间路径与磁场多重分形","authors":"Valentina Abramenko","doi":"10.1007/s11207-025-02484-2","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetograms acquired with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to calculate and analyze time variations of turbulence and multifractality in the photosphere during the development and flaring of a mature active region NOAA 13354 during its passage across the solar disk. Turbulence was explored with 2D magnetic power spectra from magnetograms, and multifractality was analyzed using the structure functions of magnetograms. Time variations of the magnetic power spectrum exponent <span>\\(\\alpha \\)</span> and of the multifractality exponent <span>\\(\\kappa \\)</span> demonstrate no pre-flare or post-flare abrupt peculiarities, instead, long periods of stability with smooth transitions into other conditions were observed. A conclusion was inferred that the turbulence and multifractality time path in the photospheric magnetic field does not follow the timing of single flares, however, it tends to correspond to the levels of the magneto-morphological complexity and flaring productivity of an AR. So, in the sense of self-organized criticality (SOC), the photosphere, being in the state of self-organization, evolves independently from the highly intermittent, SOC-state corona.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Path of Turbulence and Multi-Fractality of Magnetic Field in the Evolution of an Active Region\",\"authors\":\"Valentina Abramenko\",\"doi\":\"10.1007/s11207-025-02484-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetograms acquired with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to calculate and analyze time variations of turbulence and multifractality in the photosphere during the development and flaring of a mature active region NOAA 13354 during its passage across the solar disk. Turbulence was explored with 2D magnetic power spectra from magnetograms, and multifractality was analyzed using the structure functions of magnetograms. Time variations of the magnetic power spectrum exponent <span>\\\\(\\\\alpha \\\\)</span> and of the multifractality exponent <span>\\\\(\\\\kappa \\\\)</span> demonstrate no pre-flare or post-flare abrupt peculiarities, instead, long periods of stability with smooth transitions into other conditions were observed. A conclusion was inferred that the turbulence and multifractality time path in the photospheric magnetic field does not follow the timing of single flares, however, it tends to correspond to the levels of the magneto-morphological complexity and flaring productivity of an AR. So, in the sense of self-organized criticality (SOC), the photosphere, being in the state of self-organization, evolves independently from the highly intermittent, SOC-state corona.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02484-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02484-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用太阳动力学观测台(SDO)上的日震和磁成像仪(HMI)获取的磁图,计算和分析了成熟活动区NOAA 13354在穿越太阳盘面过程中发展和燃烧过程中光球层湍流和多重分形的时间变化。利用磁图的二维磁功率谱分析湍流,利用磁图的结构函数分析多重分形。磁功率谱指数\(\alpha \)和多重分形指数\(\kappa \)的时间变化没有表现出耀斑前或耀斑后的突然特性,相反,观察到长时间的稳定,并顺利过渡到其他条件。我们得出结论,光球磁场的湍流和多重分形时间路径并不遵循单个耀斑的时间,但它倾向于对应于AR的磁形态复杂性和耀斑生产力水平。因此,在自组织临界(SOC)意义上,处于自组织状态的光球独立于高度间歇性的SOC状态的日冕进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Path of Turbulence and Multi-Fractality of Magnetic Field in the Evolution of an Active Region

Magnetograms acquired with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to calculate and analyze time variations of turbulence and multifractality in the photosphere during the development and flaring of a mature active region NOAA 13354 during its passage across the solar disk. Turbulence was explored with 2D magnetic power spectra from magnetograms, and multifractality was analyzed using the structure functions of magnetograms. Time variations of the magnetic power spectrum exponent \(\alpha \) and of the multifractality exponent \(\kappa \) demonstrate no pre-flare or post-flare abrupt peculiarities, instead, long periods of stability with smooth transitions into other conditions were observed. A conclusion was inferred that the turbulence and multifractality time path in the photospheric magnetic field does not follow the timing of single flares, however, it tends to correspond to the levels of the magneto-morphological complexity and flaring productivity of an AR. So, in the sense of self-organized criticality (SOC), the photosphere, being in the state of self-organization, evolves independently from the highly intermittent, SOC-state corona.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信