动态干预两片正态自回归过程的鲁棒贝叶斯推理及局部影响分析

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Fatemeh Pooyannik, Zahra Khodadadi
{"title":"动态干预两片正态自回归过程的鲁棒贝叶斯推理及局部影响分析","authors":"Fatemeh Pooyannik,&nbsp;Zahra Khodadadi","doi":"10.1007/s40995-025-01779-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study’s objective is to introduce a flexible interventional autoregressive process modified based on the random autoregressive coefficient and asymmetric innovations. The transfer function of the proposed process is designed to follow the dynamic step change structure. In interventional analysis, outliers or influential observations have a considerable influence on statistical inference. Hence, we discuss the Bayesian local influence analysis to evaluate the impact of perturbations in response variables, priors, and simultaneous perturbations regarding the Bayes factor assessor. Considering the Markov Chain Monte Carlo samples, the proposed local influences and diagnostic measures can be easily obtained. The real data of the weekly new cases of COVID-19 within the period 2020-03-01 to 2023-12-17 in Greece verifies the effectiveness of the presented methodologies.\n</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 4","pages":"987 - 1003"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian Inference of Dynamic Intervention Two-Pieces Normal Autoregressive Process with Local Influence Analysis\",\"authors\":\"Fatemeh Pooyannik,&nbsp;Zahra Khodadadi\",\"doi\":\"10.1007/s40995-025-01779-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study’s objective is to introduce a flexible interventional autoregressive process modified based on the random autoregressive coefficient and asymmetric innovations. The transfer function of the proposed process is designed to follow the dynamic step change structure. In interventional analysis, outliers or influential observations have a considerable influence on statistical inference. Hence, we discuss the Bayesian local influence analysis to evaluate the impact of perturbations in response variables, priors, and simultaneous perturbations regarding the Bayes factor assessor. Considering the Markov Chain Monte Carlo samples, the proposed local influences and diagnostic measures can be easily obtained. The real data of the weekly new cases of COVID-19 within the period 2020-03-01 to 2023-12-17 in Greece verifies the effectiveness of the presented methodologies.\\n</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 4\",\"pages\":\"987 - 1003\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01779-0\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01779-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是引入一种基于随机自回归系数和非对称创新的柔性介入自回归过程。该过程的传递函数设计遵循动态阶跃变化结构。在介入分析中,异常值或有影响的观测值对统计推断有相当大的影响。因此,我们讨论贝叶斯局部影响分析,以评估响应变量、先验和同步扰动对贝叶斯因子评估器的影响。考虑到马尔可夫链蒙特卡罗样本,可以很容易地得到所提出的局部影响和诊断措施。希腊2020年03月1日至2023年12月17日每周新发病例的真实数据验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Bayesian Inference of Dynamic Intervention Two-Pieces Normal Autoregressive Process with Local Influence Analysis

Robust Bayesian Inference of Dynamic Intervention Two-Pieces Normal Autoregressive Process with Local Influence Analysis

This study’s objective is to introduce a flexible interventional autoregressive process modified based on the random autoregressive coefficient and asymmetric innovations. The transfer function of the proposed process is designed to follow the dynamic step change structure. In interventional analysis, outliers or influential observations have a considerable influence on statistical inference. Hence, we discuss the Bayesian local influence analysis to evaluate the impact of perturbations in response variables, priors, and simultaneous perturbations regarding the Bayes factor assessor. Considering the Markov Chain Monte Carlo samples, the proposed local influences and diagnostic measures can be easily obtained. The real data of the weekly new cases of COVID-19 within the period 2020-03-01 to 2023-12-17 in Greece verifies the effectiveness of the presented methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信