叶片混合器内多分散性及传热的数值模拟研究

IF 2.9 3区 工程技术
Umair Rafiq, Muhammad Shafiq Siraj, Daniyal Ahsen Awan
{"title":"叶片混合器内多分散性及传热的数值模拟研究","authors":"Umair Rafiq,&nbsp;Muhammad Shafiq Siraj,&nbsp;Daniyal Ahsen Awan","doi":"10.1007/s10035-025-01537-4","DOIUrl":null,"url":null,"abstract":"<div><p>Mixing performance and heat transfer was investigated in dry granular flows in cylindrical geometry where heat is transferred from cylindrical walls to granular bed. The discrete element method (DEM) was used to simulate these flows and to investigate the effect of different parameters on mixing and heat transfer that include impeller speed, blade rake angle, number of blades and polydispersity. The effect of impeller rotation on heat transfer was also investigated. Mixing quantification was done by using the latest subdomain mixing index (SMI). Results of DEM simulations for these parameters were concluded for mono and poly-dispersed flows. Velocity and heat transfer profiles were drawn. Better mixing was observed in the case of four blades. Higher impeller speed also showed better mixing and heat transfer. In this study, the effect of polydispersity—an often-overlooked factor—is studied. In all cases it was observed that polydispersity had a negative effect on both mixing and heat transfer due to enhanced segregation and reduced thermal conduction. It is also the first-of-its-kind analysis of coupled impeller-geometry effects on particulate mixing and thermal transport in granular media.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEM study of polydispersity and heat transfer in a bladed mixer\",\"authors\":\"Umair Rafiq,&nbsp;Muhammad Shafiq Siraj,&nbsp;Daniyal Ahsen Awan\",\"doi\":\"10.1007/s10035-025-01537-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mixing performance and heat transfer was investigated in dry granular flows in cylindrical geometry where heat is transferred from cylindrical walls to granular bed. The discrete element method (DEM) was used to simulate these flows and to investigate the effect of different parameters on mixing and heat transfer that include impeller speed, blade rake angle, number of blades and polydispersity. The effect of impeller rotation on heat transfer was also investigated. Mixing quantification was done by using the latest subdomain mixing index (SMI). Results of DEM simulations for these parameters were concluded for mono and poly-dispersed flows. Velocity and heat transfer profiles were drawn. Better mixing was observed in the case of four blades. Higher impeller speed also showed better mixing and heat transfer. In this study, the effect of polydispersity—an often-overlooked factor—is studied. In all cases it was observed that polydispersity had a negative effect on both mixing and heat transfer due to enhanced segregation and reduced thermal conduction. It is also the first-of-its-kind analysis of coupled impeller-geometry effects on particulate mixing and thermal transport in granular media.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01537-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01537-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了干燥颗粒流的混合性能和传热特性,其中热量从圆柱壁面传递到颗粒床。采用离散元法(DEM)对这些流动进行了数值模拟,研究了叶轮转速、叶片前倾角、叶片数和多分散度等参数对混合和换热的影响。研究了叶轮旋转对换热的影响。混合量化采用最新的子域混合指数(SMI)。对单分散流和多分散流进行了数值模拟。绘制了速度和传热曲线。在四个叶片的情况下,观察到更好的混合。叶轮转速越高,混合传热效果越好。在本研究中,研究了一个经常被忽视的因素——多色散的影响。在所有情况下都观察到,由于偏析增强和热传导降低,多分散性对混合和传热都有负面影响。这也是第一次对颗粒介质中颗粒混合和热输运的耦合叶轮几何效应进行分析。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DEM study of polydispersity and heat transfer in a bladed mixer

DEM study of polydispersity and heat transfer in a bladed mixer

Mixing performance and heat transfer was investigated in dry granular flows in cylindrical geometry where heat is transferred from cylindrical walls to granular bed. The discrete element method (DEM) was used to simulate these flows and to investigate the effect of different parameters on mixing and heat transfer that include impeller speed, blade rake angle, number of blades and polydispersity. The effect of impeller rotation on heat transfer was also investigated. Mixing quantification was done by using the latest subdomain mixing index (SMI). Results of DEM simulations for these parameters were concluded for mono and poly-dispersed flows. Velocity and heat transfer profiles were drawn. Better mixing was observed in the case of four blades. Higher impeller speed also showed better mixing and heat transfer. In this study, the effect of polydispersity—an often-overlooked factor—is studied. In all cases it was observed that polydispersity had a negative effect on both mixing and heat transfer due to enhanced segregation and reduced thermal conduction. It is also the first-of-its-kind analysis of coupled impeller-geometry effects on particulate mixing and thermal transport in granular media.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信