关于\(\Psi\) -Hilfer抽象分数阶微分方程解的Ulam-Hyers-Rassias-Mittag-Leffler稳定性

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Sunil Kundu, Swaroop Nandan Bora
{"title":"关于\\(\\Psi\\) -Hilfer抽象分数阶微分方程解的Ulam-Hyers-Rassias-Mittag-Leffler稳定性","authors":"Sunil Kundu,&nbsp;Swaroop Nandan Bora","doi":"10.1007/s10773-025-06055-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study devises an appropriate mathematical framework to explore the stability of the solution to <span>\\(\\Psi\\)</span>-Hilfer abstract fractional differential equations. Schauder’s fixed point theorem serves as a cornerstone in establishing the existence of the solution for such equations. Building upon this foundation, we elegantly demonstrate the Ulam–Hyers–Mittag–Leffler stability as well as the Ulam–Hyers–Rassias–Mittag–Leffler stability pertaining to these equations. By leveraging fixed point theory and generalized Grönwall’s inequality, we develop a rigorous framework that guarantees the existence and stability of the solution. This study demonstrates how resilient and consistent the solutions remain in the face of disruptions.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Ulam-Hyers-Rassias-Mittag-Leffler Stability of the Solution to a \\\\(\\\\Psi\\\\)-Hilfer Abstract Fractional Differential Equation\",\"authors\":\"Sunil Kundu,&nbsp;Swaroop Nandan Bora\",\"doi\":\"10.1007/s10773-025-06055-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study devises an appropriate mathematical framework to explore the stability of the solution to <span>\\\\(\\\\Psi\\\\)</span>-Hilfer abstract fractional differential equations. Schauder’s fixed point theorem serves as a cornerstone in establishing the existence of the solution for such equations. Building upon this foundation, we elegantly demonstrate the Ulam–Hyers–Mittag–Leffler stability as well as the Ulam–Hyers–Rassias–Mittag–Leffler stability pertaining to these equations. By leveraging fixed point theory and generalized Grönwall’s inequality, we develop a rigorous framework that guarantees the existence and stability of the solution. This study demonstrates how resilient and consistent the solutions remain in the face of disruptions.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06055-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06055-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究设计了一个适当的数学框架来探讨\(\Psi\) -Hilfer抽象分数阶微分方程解的稳定性。Schauder不动点定理是建立这类方程解的存在性的基石。在此基础上,我们优雅地展示了Ulam-Hyers-Mittag-Leffler稳定性以及与这些方程相关的Ulam-Hyers-Rassias-Mittag-Leffler稳定性。利用不动点理论和广义Grönwall不等式,我们建立了一个保证解存在性和稳定性的严格框架。这项研究表明,面对中断,解决方案仍然具有弹性和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Ulam-Hyers-Rassias-Mittag-Leffler Stability of the Solution to a \(\Psi\)-Hilfer Abstract Fractional Differential Equation

This study devises an appropriate mathematical framework to explore the stability of the solution to \(\Psi\)-Hilfer abstract fractional differential equations. Schauder’s fixed point theorem serves as a cornerstone in establishing the existence of the solution for such equations. Building upon this foundation, we elegantly demonstrate the Ulam–Hyers–Mittag–Leffler stability as well as the Ulam–Hyers–Rassias–Mittag–Leffler stability pertaining to these equations. By leveraging fixed point theory and generalized Grönwall’s inequality, we develop a rigorous framework that guarantees the existence and stability of the solution. This study demonstrates how resilient and consistent the solutions remain in the face of disruptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信