爆轰衍射临界管径的一维模型预测

IF 1.8 4区 工程技术 Q3 MECHANICS
J. Klein, J. R. Klein, O. Samimi-Abianeh
{"title":"爆轰衍射临界管径的一维模型预测","authors":"J. Klein,&nbsp;J. R. Klein,&nbsp;O. Samimi-Abianeh","doi":"10.1007/s00193-025-01235-3","DOIUrl":null,"url":null,"abstract":"<div><p>Detonation diffraction leads to either successful transmission of the detonation or quenching wherein the propagation mechanism is attenuated. The transmission behavior is governed by competing effects of energy release, curvature, and unsteadiness. There is a potentially unique critical diameter that will determine the diffraction outcome for every combustible mixture composition at each set of initial conditions. The critical diffraction diameter has been correlated to several detonation parameters to date; however, these correlations all have limitations. Analytical or quasi-analytical solutions to the diffraction problem, specifically those able to predict the critical diameter, are scarce. The present work develops several critical diameter models by uniting previous work on diffraction phenomena and the critical initiation energy problem. Curvature, decay rate, and energy-based models are established, and their critical diameter predictions are compared against a wide range of experimental critical diameter data. While detonation diffraction is a complex multifaceted phenomenon, a curvature-based one-dimensional model in this work is shown to accurately reproduce empirical critical diameter behavior at relatively low computational cost.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 4","pages":"329 - 347"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-dimensional model predictions for the detonation diffraction critical tube diameter\",\"authors\":\"J. Klein,&nbsp;J. R. Klein,&nbsp;O. Samimi-Abianeh\",\"doi\":\"10.1007/s00193-025-01235-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detonation diffraction leads to either successful transmission of the detonation or quenching wherein the propagation mechanism is attenuated. The transmission behavior is governed by competing effects of energy release, curvature, and unsteadiness. There is a potentially unique critical diameter that will determine the diffraction outcome for every combustible mixture composition at each set of initial conditions. The critical diffraction diameter has been correlated to several detonation parameters to date; however, these correlations all have limitations. Analytical or quasi-analytical solutions to the diffraction problem, specifically those able to predict the critical diameter, are scarce. The present work develops several critical diameter models by uniting previous work on diffraction phenomena and the critical initiation energy problem. Curvature, decay rate, and energy-based models are established, and their critical diameter predictions are compared against a wide range of experimental critical diameter data. While detonation diffraction is a complex multifaceted phenomenon, a curvature-based one-dimensional model in this work is shown to accurately reproduce empirical critical diameter behavior at relatively low computational cost.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"35 4\",\"pages\":\"329 - 347\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-025-01235-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-025-01235-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

爆轰衍射要么导致爆轰的成功传递,要么导致淬灭,其中传播机制被衰减。传输行为受能量释放、曲率和非稳定性的相互竞争影响。存在一个可能唯一的临界直径,它将决定每种可燃混合物组成在每组初始条件下的衍射结果。迄今为止,临界衍射直径已与几个爆轰参数相关联;然而,这些相关性都有局限性。衍射问题的解析解或准解析解,特别是那些能够预测临界直径的解,很少。本文结合前人关于衍射现象和临界起爆能问题的研究,建立了几个临界直径模型。建立了基于曲率、衰减率和能量的模型,并将它们的临界直径预测与广泛的实验临界直径数据进行了比较。虽然爆轰衍射是一个复杂的多面现象,但在这项工作中,基于曲率的一维模型被证明可以以相对较低的计算成本准确地再现经验临界直径行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-dimensional model predictions for the detonation diffraction critical tube diameter

One-dimensional model predictions for the detonation diffraction critical tube diameter

Detonation diffraction leads to either successful transmission of the detonation or quenching wherein the propagation mechanism is attenuated. The transmission behavior is governed by competing effects of energy release, curvature, and unsteadiness. There is a potentially unique critical diameter that will determine the diffraction outcome for every combustible mixture composition at each set of initial conditions. The critical diffraction diameter has been correlated to several detonation parameters to date; however, these correlations all have limitations. Analytical or quasi-analytical solutions to the diffraction problem, specifically those able to predict the critical diameter, are scarce. The present work develops several critical diameter models by uniting previous work on diffraction phenomena and the critical initiation energy problem. Curvature, decay rate, and energy-based models are established, and their critical diameter predictions are compared against a wide range of experimental critical diameter data. While detonation diffraction is a complex multifaceted phenomenon, a curvature-based one-dimensional model in this work is shown to accurately reproduce empirical critical diameter behavior at relatively low computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信