Dunkl形式中摩尔斯势的光谱和热分析:解析近似和应用

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
B. Hamil, B. C. Lütfüoğlu, A. N. Ikot, U. S. Okorie
{"title":"Dunkl形式中摩尔斯势的光谱和热分析:解析近似和应用","authors":"B. Hamil,&nbsp;B. C. Lütfüoğlu,&nbsp;A. N. Ikot,&nbsp;U. S. Okorie","doi":"10.1007/s00601-025-01999-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the quantum dynamics of a particle subject to the Morse potential within the framework of Dunkl quantum mechanics. By employing the Dunkl derivative operator–which introduces reflection symmetry–we construct a deformed Schrödinger equation and obtain exact analytical solutions using the Pekeris approximation. The resulting energy spectrum and wavefunctions reveal how Dunkl parameters alter the effective potential and vibrational states. The model is applied to several diatomic molecules, including <span>\\(\\hbox {H}_2\\)</span>, HCl, and <span>\\(\\hbox {I}_2\\)</span>, illustrating the impact of symmetry deformation on energy spectra. We also compute thermodynamic functions including the partition function, free energy, internal energy, entropy, and specific heat. The analysis shows that the Dunkl deformation induces distinct thermal behavior and offers a tunable approach to molecular modeling. These results highlight the potential of the Dunkl formalism as a useful tool for extending conventional quantum models and for exploring symmetry-deformed systems in molecular physics and quantum thermodynamics.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral and Thermal Analysis of the Morse Potential within the Dunkl Formalism: Analytical Approximations and Applications\",\"authors\":\"B. Hamil,&nbsp;B. C. Lütfüoğlu,&nbsp;A. N. Ikot,&nbsp;U. S. Okorie\",\"doi\":\"10.1007/s00601-025-01999-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate the quantum dynamics of a particle subject to the Morse potential within the framework of Dunkl quantum mechanics. By employing the Dunkl derivative operator–which introduces reflection symmetry–we construct a deformed Schrödinger equation and obtain exact analytical solutions using the Pekeris approximation. The resulting energy spectrum and wavefunctions reveal how Dunkl parameters alter the effective potential and vibrational states. The model is applied to several diatomic molecules, including <span>\\\\(\\\\hbox {H}_2\\\\)</span>, HCl, and <span>\\\\(\\\\hbox {I}_2\\\\)</span>, illustrating the impact of symmetry deformation on energy spectra. We also compute thermodynamic functions including the partition function, free energy, internal energy, entropy, and specific heat. The analysis shows that the Dunkl deformation induces distinct thermal behavior and offers a tunable approach to molecular modeling. These results highlight the potential of the Dunkl formalism as a useful tool for extending conventional quantum models and for exploring symmetry-deformed systems in molecular physics and quantum thermodynamics.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"66 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-025-01999-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01999-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们在邓克尔量子力学的框架内研究了受莫尔斯势影响的粒子的量子动力学。利用引入反射对称性的Dunkl导数算子,构造了一个变形Schrödinger方程,并利用Pekeris近似得到了精确解析解。所得的能谱和波函数揭示了Dunkl参数如何改变有效势态和振动态。该模型应用于若干双原子分子,包括\(\hbox {H}_2\)、HCl和\(\hbox {I}_2\),说明了对称变形对能谱的影响。我们也计算热力学函数,包括配分函数、自由能、内能、熵和比热。分析表明,Dunkl变形引起了不同的热行为,为分子建模提供了一种可调的方法。这些结果突出了Dunkl形式化作为扩展传统量子模型和探索分子物理和量子热力学中对称变形系统的有用工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral and Thermal Analysis of the Morse Potential within the Dunkl Formalism: Analytical Approximations and Applications

In this work, we investigate the quantum dynamics of a particle subject to the Morse potential within the framework of Dunkl quantum mechanics. By employing the Dunkl derivative operator–which introduces reflection symmetry–we construct a deformed Schrödinger equation and obtain exact analytical solutions using the Pekeris approximation. The resulting energy spectrum and wavefunctions reveal how Dunkl parameters alter the effective potential and vibrational states. The model is applied to several diatomic molecules, including \(\hbox {H}_2\), HCl, and \(\hbox {I}_2\), illustrating the impact of symmetry deformation on energy spectra. We also compute thermodynamic functions including the partition function, free energy, internal energy, entropy, and specific heat. The analysis shows that the Dunkl deformation induces distinct thermal behavior and offers a tunable approach to molecular modeling. These results highlight the potential of the Dunkl formalism as a useful tool for extending conventional quantum models and for exploring symmetry-deformed systems in molecular physics and quantum thermodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信