{"title":"对数拉普拉斯函数的反对称极大值原理和Hopf引理,及其在对称结果中的应用","authors":"Luigi Pollastro, Nicola Soave","doi":"10.1007/s10231-025-01549-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove antisymmetric maximum principles and Hopf-type lemmas for linear problems described by the Logarithmic Laplacian. As application, we prove the symmetry of solutions for semilinear problems in symmetric sets, and a rigidity result for the parallel surface problem for the Logarithmic Laplacian.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1827 - 1845"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-025-01549-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Antisymmetric maximum principles and Hopf’s lemmas for the Logarithmic Laplacian, with applications to symmetry results\",\"authors\":\"Luigi Pollastro, Nicola Soave\",\"doi\":\"10.1007/s10231-025-01549-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove antisymmetric maximum principles and Hopf-type lemmas for linear problems described by the Logarithmic Laplacian. As application, we prove the symmetry of solutions for semilinear problems in symmetric sets, and a rigidity result for the parallel surface problem for the Logarithmic Laplacian.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1827 - 1845\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-025-01549-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-025-01549-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-025-01549-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Antisymmetric maximum principles and Hopf’s lemmas for the Logarithmic Laplacian, with applications to symmetry results
We prove antisymmetric maximum principles and Hopf-type lemmas for linear problems described by the Logarithmic Laplacian. As application, we prove the symmetry of solutions for semilinear problems in symmetric sets, and a rigidity result for the parallel surface problem for the Logarithmic Laplacian.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.