{"title":"混合水泥对高温下混凝土剥落行为的影响:综述","authors":"Tim Pittrich, Frank Weise, Ludwig Stelzner","doi":"10.1617/s11527-025-02713-x","DOIUrl":null,"url":null,"abstract":"<div><p>The cement and concrete industries are striving to reduce the CO<sub>2</sub> emissions caused by the production of Portland cement. An effective way to achieve this is to replace Portland cement clinker with more environmentally friendly supplementary cementitious materials (SCMs) to produce blended cements. A variety of different SCMs are used today, from fly ash to more exotic options such as rice husk ash or waste glass powder. Depending on its material properties, concrete exposed to fire may experience spalling caused by thermomechanical and thermohydraulic mechanisms. Severe spalling leads to a reduction in the cross-section and exposure of the reinforcement, jeopardizing the load-bearing capacity of the concrete element. The use of blended cements changes the concrete properties which can affect spalling behavior at high temperatures. The link between high temperature and spalling behavior of concrete with blended cements has been investigated in several studies. A review of the existing literature led to the conclusion that the cement type influences the spalling behavior of concrete. However, the relationship does not appear to be clear, as there are contradictions and inconsistencies between the evaluated results. Therefore, further in-depth studies will help to gain a more precise understanding of the effects of blended cements on the spalling behavior of concrete at elevated temperatures.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02713-x.pdf","citationCount":"0","resultStr":"{\"title\":\"The impact of blended cements on the spalling behavior of concrete at elevated temperatures: a review\",\"authors\":\"Tim Pittrich, Frank Weise, Ludwig Stelzner\",\"doi\":\"10.1617/s11527-025-02713-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cement and concrete industries are striving to reduce the CO<sub>2</sub> emissions caused by the production of Portland cement. An effective way to achieve this is to replace Portland cement clinker with more environmentally friendly supplementary cementitious materials (SCMs) to produce blended cements. A variety of different SCMs are used today, from fly ash to more exotic options such as rice husk ash or waste glass powder. Depending on its material properties, concrete exposed to fire may experience spalling caused by thermomechanical and thermohydraulic mechanisms. Severe spalling leads to a reduction in the cross-section and exposure of the reinforcement, jeopardizing the load-bearing capacity of the concrete element. The use of blended cements changes the concrete properties which can affect spalling behavior at high temperatures. The link between high temperature and spalling behavior of concrete with blended cements has been investigated in several studies. A review of the existing literature led to the conclusion that the cement type influences the spalling behavior of concrete. However, the relationship does not appear to be clear, as there are contradictions and inconsistencies between the evaluated results. Therefore, further in-depth studies will help to gain a more precise understanding of the effects of blended cements on the spalling behavior of concrete at elevated temperatures.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02713-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02713-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02713-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The impact of blended cements on the spalling behavior of concrete at elevated temperatures: a review
The cement and concrete industries are striving to reduce the CO2 emissions caused by the production of Portland cement. An effective way to achieve this is to replace Portland cement clinker with more environmentally friendly supplementary cementitious materials (SCMs) to produce blended cements. A variety of different SCMs are used today, from fly ash to more exotic options such as rice husk ash or waste glass powder. Depending on its material properties, concrete exposed to fire may experience spalling caused by thermomechanical and thermohydraulic mechanisms. Severe spalling leads to a reduction in the cross-section and exposure of the reinforcement, jeopardizing the load-bearing capacity of the concrete element. The use of blended cements changes the concrete properties which can affect spalling behavior at high temperatures. The link between high temperature and spalling behavior of concrete with blended cements has been investigated in several studies. A review of the existing literature led to the conclusion that the cement type influences the spalling behavior of concrete. However, the relationship does not appear to be clear, as there are contradictions and inconsistencies between the evaluated results. Therefore, further in-depth studies will help to gain a more precise understanding of the effects of blended cements on the spalling behavior of concrete at elevated temperatures.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.