氟西汀作为铜绿假单胞菌抗毒剂的重新定位

IF 3 Q2 PHARMACOLOGY & PHARMACY
Syed Mohd Danish Rizvi, Amr Selim Abu Lila, Afrasim Moin, Shahanawaz Syed, Daniya Fatima, El-Sayed Khafagy, Azza A. H. Rajab, Wael A. H. Hegazy
{"title":"氟西汀作为铜绿假单胞菌抗毒剂的重新定位","authors":"Syed Mohd Danish Rizvi,&nbsp;Amr Selim Abu Lila,&nbsp;Afrasim Moin,&nbsp;Shahanawaz Syed,&nbsp;Daniya Fatima,&nbsp;El-Sayed Khafagy,&nbsp;Azza A. H. Rajab,&nbsp;Wael A. H. Hegazy","doi":"10.1186/s43094-025-00833-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The bacterial resistance is an increasing obstacle against the global health that necessitates innovation of new approaches. Targeting bacterial resistance is one of the promising approaches. <i>Pseudomonas aeruginosa</i> is a clinically significant opportunistic pathogen and causes wide diverse of illness. The <i>P. aeruginosa</i> virulence is regulated by several systems as quorum sensing (QS) systems. Additionally<i>, P. aeruginosa</i> could employ membranal sensors to sense the neurotransmitters enhancing the virulence. Fluoxetine (FLU), an antidepressant, functions by inhibiting the reuptake of the neurotransmitter serotonin. This study aimed to assess the anti-virulence activity of FLU against <i>P. aeruginosa</i>. The effect of FLU at sub-inhibitory concentration was evaluated on the biofilm formation, removal of preformed biofilms, production of virulence factors such as protease, hemolysins, elastase, rhamnolipids, motility, pyocyanin, and pyoverdine. The impact of FLU on the expression of virulence-related genes was estimated. An invasion assay and mice protection assay were conducted to assess the FLU’s diminishing effect on <i>P. aeruginosa</i> pathogenesis.</p><h3>Results</h3><p>The results showed significant ability of FLU to inhibit the biofilm formation, bacterial motility, and production of virulence factors. These antibiofilm and anti-virulence activities of FLU were owed to the downregulation of genes involved in expression of QS systems and bacterial espionage. FLU significantly lowered the bacterial invasion and protected mice from <i>P. aeruginosa.</i> Additionally, synergistic outcome was obtained when FLU was combined with antibiotics.</p><h3>Conclusion</h3><p>FLU exhibits potent antibiofilm and anti-virulence effects at sub-MIC levels, likely mediated by its inhibition of QS systems. These results position FLU as a promising candidate for adjuvant therapy against drug-resistant <i>P. aeruginosa</i> infections.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00833-3","citationCount":"0","resultStr":"{\"title\":\"Repositioning of fluoxetine as anti-virulence agent against Pseudomonas aeruginosa\",\"authors\":\"Syed Mohd Danish Rizvi,&nbsp;Amr Selim Abu Lila,&nbsp;Afrasim Moin,&nbsp;Shahanawaz Syed,&nbsp;Daniya Fatima,&nbsp;El-Sayed Khafagy,&nbsp;Azza A. H. Rajab,&nbsp;Wael A. H. Hegazy\",\"doi\":\"10.1186/s43094-025-00833-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The bacterial resistance is an increasing obstacle against the global health that necessitates innovation of new approaches. Targeting bacterial resistance is one of the promising approaches. <i>Pseudomonas aeruginosa</i> is a clinically significant opportunistic pathogen and causes wide diverse of illness. The <i>P. aeruginosa</i> virulence is regulated by several systems as quorum sensing (QS) systems. Additionally<i>, P. aeruginosa</i> could employ membranal sensors to sense the neurotransmitters enhancing the virulence. Fluoxetine (FLU), an antidepressant, functions by inhibiting the reuptake of the neurotransmitter serotonin. This study aimed to assess the anti-virulence activity of FLU against <i>P. aeruginosa</i>. The effect of FLU at sub-inhibitory concentration was evaluated on the biofilm formation, removal of preformed biofilms, production of virulence factors such as protease, hemolysins, elastase, rhamnolipids, motility, pyocyanin, and pyoverdine. The impact of FLU on the expression of virulence-related genes was estimated. An invasion assay and mice protection assay were conducted to assess the FLU’s diminishing effect on <i>P. aeruginosa</i> pathogenesis.</p><h3>Results</h3><p>The results showed significant ability of FLU to inhibit the biofilm formation, bacterial motility, and production of virulence factors. These antibiofilm and anti-virulence activities of FLU were owed to the downregulation of genes involved in expression of QS systems and bacterial espionage. FLU significantly lowered the bacterial invasion and protected mice from <i>P. aeruginosa.</i> Additionally, synergistic outcome was obtained when FLU was combined with antibiotics.</p><h3>Conclusion</h3><p>FLU exhibits potent antibiofilm and anti-virulence effects at sub-MIC levels, likely mediated by its inhibition of QS systems. These results position FLU as a promising candidate for adjuvant therapy against drug-resistant <i>P. aeruginosa</i> infections.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00833-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-025-00833-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00833-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

细菌耐药性对全球健康的影响越来越大,需要创新新的方法。靶向细菌耐药性是一种很有前途的方法。铜绿假单胞菌是临床上重要的机会致病菌,可引起多种疾病。铜绿假单胞菌的毒力受群体感应(QS)等系统的调控。此外,铜绿假单胞菌可以利用膜传感器感知神经递质,增强毒力。氟西汀(FLU)是一种抗抑郁药,通过抑制神经递质血清素的再吸收而起作用。本研究旨在评价流感对铜绿假单胞菌的抗毒活性。亚抑制浓度的流感对生物膜的形成、预先形成的生物膜的去除、毒力因子如蛋白酶、溶血素、弹性酶、鼠李糖脂、动力、pyocyanin和pyoverdine的产生的影响进行了评估。估计流感对毒力相关基因表达的影响。通过入侵实验和小鼠保护实验来评估流感对铜绿假单胞菌发病机制的减弱作用。结果流感对细菌生物膜的形成、细菌活力和毒力因子的产生有明显的抑制作用。这些抗膜和抗毒活性是由于参与QS系统和细菌间谍表达的基因下调。流感显著降低细菌入侵,保护小鼠免受铜绿假单胞菌感染。此外,当流感与抗生素联合使用时,可获得协同效果。结论流感在亚mic水平表现出强大的抗生素膜和抗毒作用,可能是通过抑制QS系统介导的。这些结果使流感成为抗耐药铜绿假单胞菌感染的有希望的辅助治疗候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repositioning of fluoxetine as anti-virulence agent against Pseudomonas aeruginosa

Background

The bacterial resistance is an increasing obstacle against the global health that necessitates innovation of new approaches. Targeting bacterial resistance is one of the promising approaches. Pseudomonas aeruginosa is a clinically significant opportunistic pathogen and causes wide diverse of illness. The P. aeruginosa virulence is regulated by several systems as quorum sensing (QS) systems. Additionally, P. aeruginosa could employ membranal sensors to sense the neurotransmitters enhancing the virulence. Fluoxetine (FLU), an antidepressant, functions by inhibiting the reuptake of the neurotransmitter serotonin. This study aimed to assess the anti-virulence activity of FLU against P. aeruginosa. The effect of FLU at sub-inhibitory concentration was evaluated on the biofilm formation, removal of preformed biofilms, production of virulence factors such as protease, hemolysins, elastase, rhamnolipids, motility, pyocyanin, and pyoverdine. The impact of FLU on the expression of virulence-related genes was estimated. An invasion assay and mice protection assay were conducted to assess the FLU’s diminishing effect on P. aeruginosa pathogenesis.

Results

The results showed significant ability of FLU to inhibit the biofilm formation, bacterial motility, and production of virulence factors. These antibiofilm and anti-virulence activities of FLU were owed to the downregulation of genes involved in expression of QS systems and bacterial espionage. FLU significantly lowered the bacterial invasion and protected mice from P. aeruginosa. Additionally, synergistic outcome was obtained when FLU was combined with antibiotics.

Conclusion

FLU exhibits potent antibiofilm and anti-virulence effects at sub-MIC levels, likely mediated by its inhibition of QS systems. These results position FLU as a promising candidate for adjuvant therapy against drug-resistant P. aeruginosa infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信