探索汤姆逊问题的能量格局:局部极小和稳态

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paolo Amore, Victor Figueroa, Enrique Diaz, Jorge A. López, Trevor Vincent
{"title":"探索汤姆逊问题的能量格局:局部极小和稳态","authors":"Paolo Amore,&nbsp;Victor Figueroa,&nbsp;Enrique Diaz,&nbsp;Jorge A. López,&nbsp;Trevor Vincent","doi":"10.1007/s10955-025-03520-y","DOIUrl":null,"url":null,"abstract":"<div><p>We conducted a comprehensive numerical investigation of the energy landscape of the Thomson problem for systems up to <span>\\(N=150\\)</span>. Our results show the number of distinct configurations grows exponentially with <i>N</i>, but significantly faster than previously reported. Furthermore, we find that the average energy gap between independent configurations at a given <i>N</i> decays exponentially with <i>N</i>, dramatically increasing the computational complexity for larger systems. Finally, we developed a novel approach that reformulates the search for stationary points in the Thomson problem (or similar systems) as an equivalent minimization problem using a specifically designed potential. Leveraging this method, we performed a detailed exploration of the solution landscape for <span>\\(N\\le 24\\)</span> and estimated the growth of the number of stationary states to be exponential in <i>N</i>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Energy Landscape of the Thomson Problem: Local Minima and Stationary States\",\"authors\":\"Paolo Amore,&nbsp;Victor Figueroa,&nbsp;Enrique Diaz,&nbsp;Jorge A. López,&nbsp;Trevor Vincent\",\"doi\":\"10.1007/s10955-025-03520-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We conducted a comprehensive numerical investigation of the energy landscape of the Thomson problem for systems up to <span>\\\\(N=150\\\\)</span>. Our results show the number of distinct configurations grows exponentially with <i>N</i>, but significantly faster than previously reported. Furthermore, we find that the average energy gap between independent configurations at a given <i>N</i> decays exponentially with <i>N</i>, dramatically increasing the computational complexity for larger systems. Finally, we developed a novel approach that reformulates the search for stationary points in the Thomson problem (or similar systems) as an equivalent minimization problem using a specifically designed potential. Leveraging this method, we performed a detailed exploration of the solution landscape for <span>\\\\(N\\\\le 24\\\\)</span> and estimated the growth of the number of stationary states to be exponential in <i>N</i>.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 10\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03520-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03520-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们对直到\(N=150\)的系统的汤姆逊问题的能量景观进行了全面的数值研究。我们的结果表明,不同构型的数量随N呈指数增长,但明显快于先前的报道。此外,我们发现在给定N下,独立构型之间的平均能隙随N呈指数衰减,极大地增加了较大系统的计算复杂度。最后,我们开发了一种新的方法,将汤姆逊问题(或类似系统)中的平稳点的搜索重新表述为使用特定设计的势的等效最小化问题。利用这种方法,我们对\(N\le 24\)的解决方案进行了详细的探索,并估计固定状态的数量在N中呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Energy Landscape of the Thomson Problem: Local Minima and Stationary States

We conducted a comprehensive numerical investigation of the energy landscape of the Thomson problem for systems up to \(N=150\). Our results show the number of distinct configurations grows exponentially with N, but significantly faster than previously reported. Furthermore, we find that the average energy gap between independent configurations at a given N decays exponentially with N, dramatically increasing the computational complexity for larger systems. Finally, we developed a novel approach that reformulates the search for stationary points in the Thomson problem (or similar systems) as an equivalent minimization problem using a specifically designed potential. Leveraging this method, we performed a detailed exploration of the solution landscape for \(N\le 24\) and estimated the growth of the number of stationary states to be exponential in N.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信