开发耐低温高压电解质的多维协同策略

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-25 DOI:10.1007/s11581-025-06496-7
Min Li, Haiping Liu, Sifu Bi, Yu Zhang, Kaiqi Zhang, Yixiao Guo, Zhongke Yang, Mingxu Liu, Kexin Wang, Xin Wang
{"title":"开发耐低温高压电解质的多维协同策略","authors":"Min Li,&nbsp;Haiping Liu,&nbsp;Sifu Bi,&nbsp;Yu Zhang,&nbsp;Kaiqi Zhang,&nbsp;Yixiao Guo,&nbsp;Zhongke Yang,&nbsp;Mingxu Liu,&nbsp;Kexin Wang,&nbsp;Xin Wang","doi":"10.1007/s11581-025-06496-7","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional lithium-ion batteries suffer from impaired charge transfer kinetics due to high viscosity and low conductivity at low temperatures, alongside performance degradation, which restricts their applications in polar exploration and aerospace engineering. To address these challenges, we engineered a dual-salt electrolyte through solvent-salt-additive triple synergy. This system employs a LiPF<sub>6</sub>/LiFSI dual-salt electrolyte system, where the synergistic interaction between the two lithium salts optimizes electrode interfacial compatibility and ion transport kinetics. The solvent matrix is composed of EC (high dielectric constant medium), ethyl methyl carbonate (EMC, wide electrochemical stability window), and propyl acetate (PA, low freezing point), forming a functionalized composite solvent system. The incorporation of film-forming additives facilitates the formation of a dense and stable solid electrolyte interphase (SEI). Through this coordinated design, simultaneous enhancement of interfacial stability and lithium-ion migration kinetics is achieved. Consequently, the conductivity of this electrolyte is greater than 1 mS·cm<sup>−1</sup> at -50 ℃. The LiCoO<sub>2</sub>/graphite lithium-ion battery employing this electrolyte exhibits outstanding performance: &gt; 80% capacity retention relative to room-temperature capacity at -60 ℃ (0.5C); &gt; 80% capacity retention after 100 cycles at -40 ℃; and ~ 98% capacity retention after 50 cycles at 50 ℃ (0.5C).</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"8061 - 8072"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-dimensional collaborative strategy for developing low-temperature and high-voltage resistant electrolytes\",\"authors\":\"Min Li,&nbsp;Haiping Liu,&nbsp;Sifu Bi,&nbsp;Yu Zhang,&nbsp;Kaiqi Zhang,&nbsp;Yixiao Guo,&nbsp;Zhongke Yang,&nbsp;Mingxu Liu,&nbsp;Kexin Wang,&nbsp;Xin Wang\",\"doi\":\"10.1007/s11581-025-06496-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional lithium-ion batteries suffer from impaired charge transfer kinetics due to high viscosity and low conductivity at low temperatures, alongside performance degradation, which restricts their applications in polar exploration and aerospace engineering. To address these challenges, we engineered a dual-salt electrolyte through solvent-salt-additive triple synergy. This system employs a LiPF<sub>6</sub>/LiFSI dual-salt electrolyte system, where the synergistic interaction between the two lithium salts optimizes electrode interfacial compatibility and ion transport kinetics. The solvent matrix is composed of EC (high dielectric constant medium), ethyl methyl carbonate (EMC, wide electrochemical stability window), and propyl acetate (PA, low freezing point), forming a functionalized composite solvent system. The incorporation of film-forming additives facilitates the formation of a dense and stable solid electrolyte interphase (SEI). Through this coordinated design, simultaneous enhancement of interfacial stability and lithium-ion migration kinetics is achieved. Consequently, the conductivity of this electrolyte is greater than 1 mS·cm<sup>−1</sup> at -50 ℃. The LiCoO<sub>2</sub>/graphite lithium-ion battery employing this electrolyte exhibits outstanding performance: &gt; 80% capacity retention relative to room-temperature capacity at -60 ℃ (0.5C); &gt; 80% capacity retention after 100 cycles at -40 ℃; and ~ 98% capacity retention after 50 cycles at 50 ℃ (0.5C).</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 8\",\"pages\":\"8061 - 8072\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06496-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06496-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的锂离子电池在低温下的高粘度和低导电性会导致电荷转移动力学受损,同时性能也会下降,这限制了它们在极地勘探和航空航天工程中的应用。为了应对这些挑战,我们设计了一种通过溶剂-盐-添加剂三重协同作用的双盐电解质。该系统采用LiPF6/LiFSI双盐电解质体系,两种锂盐之间的协同作用优化了电极界面相容性和离子传输动力学。溶剂基体由EC(高介电常数介质)、甲基碳酸乙酯(EMC,宽电化学稳定窗口)、醋酸丙酯(PA,低凝固点)组成,形成功能化复合溶剂体系。成膜添加剂的掺入有助于形成致密和稳定的固体电解质界面(SEI)。通过这种协调设计,同时增强了界面稳定性和锂离子迁移动力学。因此,该电解质在-50℃时的电导率大于1 mS·cm−1。采用该电解质制备的LiCoO2/石墨锂离子电池表现出优异的性能:在-60℃(0.5℃)下,电池容量相对于室温容量保持80%;在-40℃下,循环100次后电池容量保持80%;在50℃(0.5℃)下循环50次后容量保持率达98%。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-dimensional collaborative strategy for developing low-temperature and high-voltage resistant electrolytes

Conventional lithium-ion batteries suffer from impaired charge transfer kinetics due to high viscosity and low conductivity at low temperatures, alongside performance degradation, which restricts their applications in polar exploration and aerospace engineering. To address these challenges, we engineered a dual-salt electrolyte through solvent-salt-additive triple synergy. This system employs a LiPF6/LiFSI dual-salt electrolyte system, where the synergistic interaction between the two lithium salts optimizes electrode interfacial compatibility and ion transport kinetics. The solvent matrix is composed of EC (high dielectric constant medium), ethyl methyl carbonate (EMC, wide electrochemical stability window), and propyl acetate (PA, low freezing point), forming a functionalized composite solvent system. The incorporation of film-forming additives facilitates the formation of a dense and stable solid electrolyte interphase (SEI). Through this coordinated design, simultaneous enhancement of interfacial stability and lithium-ion migration kinetics is achieved. Consequently, the conductivity of this electrolyte is greater than 1 mS·cm−1 at -50 ℃. The LiCoO2/graphite lithium-ion battery employing this electrolyte exhibits outstanding performance: > 80% capacity retention relative to room-temperature capacity at -60 ℃ (0.5C); > 80% capacity retention after 100 cycles at -40 ℃; and ~ 98% capacity retention after 50 cycles at 50 ℃ (0.5C).

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信