用于钠离子电池可逆钠存储的纯SnSb纳米晶体

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-05-26 DOI:10.1007/s11581-025-06375-1
Kiran B. Kore, Sandeep C. Kanade, Rahul Mahadeo Mendhe, Shivkumar R. Newaskar, Sandesh R. Jadkar, Musthafa Ottakam Thotiyl, Adinath M. Funde
{"title":"用于钠离子电池可逆钠存储的纯SnSb纳米晶体","authors":"Kiran B. Kore,&nbsp;Sandeep C. Kanade,&nbsp;Rahul Mahadeo Mendhe,&nbsp;Shivkumar R. Newaskar,&nbsp;Sandesh R. Jadkar,&nbsp;Musthafa Ottakam Thotiyl,&nbsp;Adinath M. Funde","doi":"10.1007/s11581-025-06375-1","DOIUrl":null,"url":null,"abstract":"<div><p>The pursuit of increased energy densities in lithium-ion and sodium-ion batteries is gaining significant traction. The effectiveness of sodium-ion batteries heavily relies on electrode materials, prompting considerable research focused on creating innovative materials that enhance stability and boost energy storage capacity. We present the synthesis of high-quality, phase-pure SnSb alloy nanocrystals measuring approximately 20 nm developed through a straightforward, rapid, and cost-effective reductive co-precipitation technique. The SnSb alloy serves as an anode material for reversible sodium-ion storage in rechargeable sodium-ion batteries. We investigated its electrochemical performance through cyclic voltammetry, rate capability tests, cyclic stability evaluations, and electrochemical impedance spectroscopy. The SnSb alloy nanocrystals demonstrate impressive Na-ion storage traits, showcasing a notable energy density (initial capacity: roughly 300 mAh/g), excellent cyclability (around 110 mAh/g after 100 cycles), and outstanding rate capability (2000 mA/g).</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 7","pages":"6975 - 6984"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11581-025-06375-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Phase pure SnSb nanocrystals for reversible sodium storage in sodium-ion batteries\",\"authors\":\"Kiran B. Kore,&nbsp;Sandeep C. Kanade,&nbsp;Rahul Mahadeo Mendhe,&nbsp;Shivkumar R. Newaskar,&nbsp;Sandesh R. Jadkar,&nbsp;Musthafa Ottakam Thotiyl,&nbsp;Adinath M. Funde\",\"doi\":\"10.1007/s11581-025-06375-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The pursuit of increased energy densities in lithium-ion and sodium-ion batteries is gaining significant traction. The effectiveness of sodium-ion batteries heavily relies on electrode materials, prompting considerable research focused on creating innovative materials that enhance stability and boost energy storage capacity. We present the synthesis of high-quality, phase-pure SnSb alloy nanocrystals measuring approximately 20 nm developed through a straightforward, rapid, and cost-effective reductive co-precipitation technique. The SnSb alloy serves as an anode material for reversible sodium-ion storage in rechargeable sodium-ion batteries. We investigated its electrochemical performance through cyclic voltammetry, rate capability tests, cyclic stability evaluations, and electrochemical impedance spectroscopy. The SnSb alloy nanocrystals demonstrate impressive Na-ion storage traits, showcasing a notable energy density (initial capacity: roughly 300 mAh/g), excellent cyclability (around 110 mAh/g after 100 cycles), and outstanding rate capability (2000 mA/g).</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 7\",\"pages\":\"6975 - 6984\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11581-025-06375-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06375-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06375-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高锂离子和钠离子电池的能量密度的追求正在获得显著的牵引力。钠离子电池的有效性在很大程度上依赖于电极材料,这促使大量研究集中在创造提高稳定性和提高储能容量的创新材料上。我们通过一种简单、快速、经济的还原共沉淀技术,合成了高质量、相纯的SnSb合金纳米晶体,尺寸约为20 nm。在可充电钠离子电池中,SnSb合金作为可逆钠离子存储的负极材料。通过循环伏安法、速率性能测试、循环稳定性评价和电化学阻抗谱对其电化学性能进行了研究。SnSb合金纳米晶体表现出令人印象深刻的钠离子存储特性,表现出显著的能量密度(初始容量:约300 mAh/g),出色的可循环性(100次循环后约110 mAh/g)和出色的倍率能力(2000 mA/g)。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase pure SnSb nanocrystals for reversible sodium storage in sodium-ion batteries

The pursuit of increased energy densities in lithium-ion and sodium-ion batteries is gaining significant traction. The effectiveness of sodium-ion batteries heavily relies on electrode materials, prompting considerable research focused on creating innovative materials that enhance stability and boost energy storage capacity. We present the synthesis of high-quality, phase-pure SnSb alloy nanocrystals measuring approximately 20 nm developed through a straightforward, rapid, and cost-effective reductive co-precipitation technique. The SnSb alloy serves as an anode material for reversible sodium-ion storage in rechargeable sodium-ion batteries. We investigated its electrochemical performance through cyclic voltammetry, rate capability tests, cyclic stability evaluations, and electrochemical impedance spectroscopy. The SnSb alloy nanocrystals demonstrate impressive Na-ion storage traits, showcasing a notable energy density (initial capacity: roughly 300 mAh/g), excellent cyclability (around 110 mAh/g after 100 cycles), and outstanding rate capability (2000 mA/g).

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信