Annika Robens-Radermacher, Cezary Kujath, Freek Bos, Viktor Mechtcherine, Jörg F. Unger
{"title":"3D打印混凝土的力学性能:RILEM TC 304-ADC实验室间研究-用于查询、共享和分析实验数据的数据库系统的设计和实现","authors":"Annika Robens-Radermacher, Cezary Kujath, Freek Bos, Viktor Mechtcherine, Jörg F. Unger","doi":"10.1617/s11527-025-02650-9","DOIUrl":null,"url":null,"abstract":"<div><p>Interlaboratory studies are essential for implementing standardized test methods for new innovative materials or technologies such as 3D concrete printing, certifying reference materials, and validating methods. They provide the basis for recommendations and design standards. Typically, the collected data are used only for one study and are published in paper form, without open access to the raw data files. However, preserving the collected data and analysis procedures in a shareable and reusable way leads to advantages for further usage. New data with the same structure can be added or the data can be analyzed by a new analysis procedure generating new knowledge. Additionally, resources are saved by avoiding the repetition of the same measurements. In line with the recent digitalization trend in material science and engineering, a database for the interlaboratory study on mechanical properties of 3D printed concrete conducted in RILEM Technical Committee 304-ADC is established. The challenges and experiences from defining the data structure, uploading the data, and using the database for evaluations are discussed. The openBIS software is used to create and fill the database, while an export method to an SQLite format is developed and discussed to generate a shareable and reusable database. With the exported database, querying the data is possible independently of a particular data management system. Additionally, examples of data processing with reusable workflows automating the analysis procedure are demonstrated.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02650-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of 3D printed concrete: a RILEM TC 304-ADC interlaboratory study-Design and implementation of a database system for querying, sharing, and analyzing experimental data\",\"authors\":\"Annika Robens-Radermacher, Cezary Kujath, Freek Bos, Viktor Mechtcherine, Jörg F. Unger\",\"doi\":\"10.1617/s11527-025-02650-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interlaboratory studies are essential for implementing standardized test methods for new innovative materials or technologies such as 3D concrete printing, certifying reference materials, and validating methods. They provide the basis for recommendations and design standards. Typically, the collected data are used only for one study and are published in paper form, without open access to the raw data files. However, preserving the collected data and analysis procedures in a shareable and reusable way leads to advantages for further usage. New data with the same structure can be added or the data can be analyzed by a new analysis procedure generating new knowledge. Additionally, resources are saved by avoiding the repetition of the same measurements. In line with the recent digitalization trend in material science and engineering, a database for the interlaboratory study on mechanical properties of 3D printed concrete conducted in RILEM Technical Committee 304-ADC is established. The challenges and experiences from defining the data structure, uploading the data, and using the database for evaluations are discussed. The openBIS software is used to create and fill the database, while an export method to an SQLite format is developed and discussed to generate a shareable and reusable database. With the exported database, querying the data is possible independently of a particular data management system. Additionally, examples of data processing with reusable workflows automating the analysis procedure are demonstrated.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02650-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02650-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02650-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanical properties of 3D printed concrete: a RILEM TC 304-ADC interlaboratory study-Design and implementation of a database system for querying, sharing, and analyzing experimental data
Interlaboratory studies are essential for implementing standardized test methods for new innovative materials or technologies such as 3D concrete printing, certifying reference materials, and validating methods. They provide the basis for recommendations and design standards. Typically, the collected data are used only for one study and are published in paper form, without open access to the raw data files. However, preserving the collected data and analysis procedures in a shareable and reusable way leads to advantages for further usage. New data with the same structure can be added or the data can be analyzed by a new analysis procedure generating new knowledge. Additionally, resources are saved by avoiding the repetition of the same measurements. In line with the recent digitalization trend in material science and engineering, a database for the interlaboratory study on mechanical properties of 3D printed concrete conducted in RILEM Technical Committee 304-ADC is established. The challenges and experiences from defining the data structure, uploading the data, and using the database for evaluations are discussed. The openBIS software is used to create and fill the database, while an export method to an SQLite format is developed and discussed to generate a shareable and reusable database. With the exported database, querying the data is possible independently of a particular data management system. Additionally, examples of data processing with reusable workflows automating the analysis procedure are demonstrated.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.