{"title":"高维奇异Moser-Trudinger泛函极值的紧致性","authors":"Xianfeng Su, Rulong Xie, Xiaomeng Li","doi":"10.1007/s10231-024-01530-3","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this note is to study the compactness of extremals for the singular Moser-Trudinger inequality. More precisely, let <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span>, <span>\\(n\\ge 2\\)</span>, be a bounded open smooth domain and <span>\\(0\\in \\Omega \\)</span>, <span>\\(W^{1,n}_{0}(\\Omega )\\)</span> be the standard Sobolev space. For <span>\\(\\epsilon \\in [0,1)\\)</span>, Csato-Roy-Nguyen [J. Diff. Equ. 270:843–882, 2021] proved that the following singular Moser-Trudinger inequality </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in W_0^{1,n}(\\Omega ),\\,\\int _{\\Omega }|\\nabla u|^ndx\\le 1}\\int _{\\Omega }\\frac{e^{\\alpha _n(1-\\epsilon )|u|^{\\frac{n}{n-1}}}-1 }{|x|^{n\\epsilon }}dx \\end{aligned}$$</span></div></div><p>can be achieved by a nonnegative function <span>\\(u_\\epsilon \\in W^{1,n}_{0}(\\Omega )\\)</span> with <span>\\(\\int _{\\Omega }|\\nabla u_\\epsilon |^n dx\\le 1\\)</span>. Here <span>\\(\\alpha _{n}=n \\omega _{n-1}^{1/(n-1)}\\)</span> with <span>\\(\\omega _{n-1}\\)</span> being the surface area of the <span>\\((n-1)\\)</span>-dimensional unit sphere.</p><p>Relying on above result, by blow-up analysis, we consider the compactness of function family <span>\\(\\{u_\\epsilon \\}_{0<\\epsilon <1}\\)</span> and prove, up to a subsequence, <span>\\(u_\\epsilon \\rightarrow u_0\\)</span> in <span>\\(W^{1,n}_0(\\Omega )\\cap C^0({\\overline{\\Omega }})\\cap C_{\\textrm{loc}}^{1}({\\overline{\\Omega }}{\\setminus }\\{0\\})\\)</span> as <span>\\(\\epsilon \\rightarrow 0\\)</span>, where <span>\\(u_0\\)</span> is an extremal function of the following supremum </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in W_0^{1,n}(\\Omega ),\\,\\int _{\\Omega }|\\nabla u|^ndx\\le 1}\\int _{\\Omega }(e^{\\alpha _n|u|^{\\frac{n}{n-1}}}-1)dx. \\end{aligned}$$</span></div></div></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1357 - 1379"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness of extremals for singular Moser–Trudinger functionals in high dimension\",\"authors\":\"Xianfeng Su, Rulong Xie, Xiaomeng Li\",\"doi\":\"10.1007/s10231-024-01530-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this note is to study the compactness of extremals for the singular Moser-Trudinger inequality. More precisely, let <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^n\\\\)</span>, <span>\\\\(n\\\\ge 2\\\\)</span>, be a bounded open smooth domain and <span>\\\\(0\\\\in \\\\Omega \\\\)</span>, <span>\\\\(W^{1,n}_{0}(\\\\Omega )\\\\)</span> be the standard Sobolev space. For <span>\\\\(\\\\epsilon \\\\in [0,1)\\\\)</span>, Csato-Roy-Nguyen [J. Diff. Equ. 270:843–882, 2021] proved that the following singular Moser-Trudinger inequality </p><div><div><span>$$\\\\begin{aligned} \\\\sup _{u\\\\in W_0^{1,n}(\\\\Omega ),\\\\,\\\\int _{\\\\Omega }|\\\\nabla u|^ndx\\\\le 1}\\\\int _{\\\\Omega }\\\\frac{e^{\\\\alpha _n(1-\\\\epsilon )|u|^{\\\\frac{n}{n-1}}}-1 }{|x|^{n\\\\epsilon }}dx \\\\end{aligned}$$</span></div></div><p>can be achieved by a nonnegative function <span>\\\\(u_\\\\epsilon \\\\in W^{1,n}_{0}(\\\\Omega )\\\\)</span> with <span>\\\\(\\\\int _{\\\\Omega }|\\\\nabla u_\\\\epsilon |^n dx\\\\le 1\\\\)</span>. Here <span>\\\\(\\\\alpha _{n}=n \\\\omega _{n-1}^{1/(n-1)}\\\\)</span> with <span>\\\\(\\\\omega _{n-1}\\\\)</span> being the surface area of the <span>\\\\((n-1)\\\\)</span>-dimensional unit sphere.</p><p>Relying on above result, by blow-up analysis, we consider the compactness of function family <span>\\\\(\\\\{u_\\\\epsilon \\\\}_{0<\\\\epsilon <1}\\\\)</span> and prove, up to a subsequence, <span>\\\\(u_\\\\epsilon \\\\rightarrow u_0\\\\)</span> in <span>\\\\(W^{1,n}_0(\\\\Omega )\\\\cap C^0({\\\\overline{\\\\Omega }})\\\\cap C_{\\\\textrm{loc}}^{1}({\\\\overline{\\\\Omega }}{\\\\setminus }\\\\{0\\\\})\\\\)</span> as <span>\\\\(\\\\epsilon \\\\rightarrow 0\\\\)</span>, where <span>\\\\(u_0\\\\)</span> is an extremal function of the following supremum </p><div><div><span>$$\\\\begin{aligned} \\\\sup _{u\\\\in W_0^{1,n}(\\\\Omega ),\\\\,\\\\int _{\\\\Omega }|\\\\nabla u|^ndx\\\\le 1}\\\\int _{\\\\Omega }(e^{\\\\alpha _n|u|^{\\\\frac{n}{n-1}}}-1)dx. \\\\end{aligned}$$</span></div></div></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1357 - 1379\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01530-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01530-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compactness of extremals for singular Moser–Trudinger functionals in high dimension
The main purpose of this note is to study the compactness of extremals for the singular Moser-Trudinger inequality. More precisely, let \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 2\), be a bounded open smooth domain and \(0\in \Omega \), \(W^{1,n}_{0}(\Omega )\) be the standard Sobolev space. For \(\epsilon \in [0,1)\), Csato-Roy-Nguyen [J. Diff. Equ. 270:843–882, 2021] proved that the following singular Moser-Trudinger inequality
can be achieved by a nonnegative function \(u_\epsilon \in W^{1,n}_{0}(\Omega )\) with \(\int _{\Omega }|\nabla u_\epsilon |^n dx\le 1\). Here \(\alpha _{n}=n \omega _{n-1}^{1/(n-1)}\) with \(\omega _{n-1}\) being the surface area of the \((n-1)\)-dimensional unit sphere.
Relying on above result, by blow-up analysis, we consider the compactness of function family \(\{u_\epsilon \}_{0<\epsilon <1}\) and prove, up to a subsequence, \(u_\epsilon \rightarrow u_0\) in \(W^{1,n}_0(\Omega )\cap C^0({\overline{\Omega }})\cap C_{\textrm{loc}}^{1}({\overline{\Omega }}{\setminus }\{0\})\) as \(\epsilon \rightarrow 0\), where \(u_0\) is an extremal function of the following supremum
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.