Freek Bos, Costantino Menna, Annika Robens-Radermacher, Rob Wolfs, Nicolas Roussel, Hélène Lombois-Burger, Bilal Baz, Daniel Weger, Behzad Nematollahi, Manu Santhanam, Yamei Zhang, Shantanu Bhattacherjee, Zijian Jia, Yu Chen, Viktor Mechtcherine
{"title":"3D打印混凝土的力学性能:RILEM TC 304-ADC实验室间研究-方法和主要结果","authors":"Freek Bos, Costantino Menna, Annika Robens-Radermacher, Rob Wolfs, Nicolas Roussel, Hélène Lombois-Burger, Bilal Baz, Daniel Weger, Behzad Nematollahi, Manu Santhanam, Yamei Zhang, Shantanu Bhattacherjee, Zijian Jia, Yu Chen, Viktor Mechtcherine","doi":"10.1617/s11527-025-02686-x","DOIUrl":null,"url":null,"abstract":"<div><p>To show compliance to structural engineering codes and implement quality control measures, it is critical to obtain reliable mechanical properties of the materials in question. For conventional cast and precast concrete, the experimental procedures and relationships between mechanical properties, the material composition, and the production methods are globally known, but for 3D concrete printing (3DCP), these relations have not yet been established. Previous studies have shown little consistency in results, and the underlying experimental methods have not been established broadly. There is an urgent need to address these issues as the application of 3DCP in practice projects is growing rapidly. Therefore, RILEM TC 304-ADC: <i>Assessment of Additively Manufactured Concrete Materials and Structures</i> has set up a large interlaboratory study into the mechanical properties of 3D printed concrete. This paper presents key elements of the experimental approach detailed in the Study Plan and the supporting considerations. Furthermore, it reports on the response, consisting of 34 contributions from 30 laboratories, detailing global coverage, properties of the applied mixture designs and characteristics of the printing facilities that have been used. Subsequently, some fundamental results from compression, flexural, and E-modulus testing are presented and—considering cast specimens as a reference—discussed. On average, a reduction in strength was found in compression and E-modulus (all tested orientations). For flexure, on the other hand, an increase was found in two testing orientations, while a decrease was observed in the third orientation. Importantly, even though the applied experimental methods were found to be reasonably appropriate to obtain the required data, the differences found between individual contributions are significant and sometimes non-consistent, suggesting that testing on specific material-facility combinations is necessary to reliably determine the mechanical properties of objects produced from them. Furthermore, a theoretical framework needs to be developed to further explain the variations that were observed. Extensive analyses of all acquired data are out of the scope of this contribution, but presented in two associated papers, whereas a third presents the data management approach used to process the approximately 5,000 test results.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02686-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of 3D printed concrete: a RILEM TC 304-ADC interlaboratory study — approach and main results\",\"authors\":\"Freek Bos, Costantino Menna, Annika Robens-Radermacher, Rob Wolfs, Nicolas Roussel, Hélène Lombois-Burger, Bilal Baz, Daniel Weger, Behzad Nematollahi, Manu Santhanam, Yamei Zhang, Shantanu Bhattacherjee, Zijian Jia, Yu Chen, Viktor Mechtcherine\",\"doi\":\"10.1617/s11527-025-02686-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To show compliance to structural engineering codes and implement quality control measures, it is critical to obtain reliable mechanical properties of the materials in question. For conventional cast and precast concrete, the experimental procedures and relationships between mechanical properties, the material composition, and the production methods are globally known, but for 3D concrete printing (3DCP), these relations have not yet been established. Previous studies have shown little consistency in results, and the underlying experimental methods have not been established broadly. There is an urgent need to address these issues as the application of 3DCP in practice projects is growing rapidly. Therefore, RILEM TC 304-ADC: <i>Assessment of Additively Manufactured Concrete Materials and Structures</i> has set up a large interlaboratory study into the mechanical properties of 3D printed concrete. This paper presents key elements of the experimental approach detailed in the Study Plan and the supporting considerations. Furthermore, it reports on the response, consisting of 34 contributions from 30 laboratories, detailing global coverage, properties of the applied mixture designs and characteristics of the printing facilities that have been used. Subsequently, some fundamental results from compression, flexural, and E-modulus testing are presented and—considering cast specimens as a reference—discussed. On average, a reduction in strength was found in compression and E-modulus (all tested orientations). For flexure, on the other hand, an increase was found in two testing orientations, while a decrease was observed in the third orientation. Importantly, even though the applied experimental methods were found to be reasonably appropriate to obtain the required data, the differences found between individual contributions are significant and sometimes non-consistent, suggesting that testing on specific material-facility combinations is necessary to reliably determine the mechanical properties of objects produced from them. Furthermore, a theoretical framework needs to be developed to further explain the variations that were observed. Extensive analyses of all acquired data are out of the scope of this contribution, but presented in two associated papers, whereas a third presents the data management approach used to process the approximately 5,000 test results.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02686-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02686-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02686-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Mechanical properties of 3D printed concrete: a RILEM TC 304-ADC interlaboratory study — approach and main results
To show compliance to structural engineering codes and implement quality control measures, it is critical to obtain reliable mechanical properties of the materials in question. For conventional cast and precast concrete, the experimental procedures and relationships between mechanical properties, the material composition, and the production methods are globally known, but for 3D concrete printing (3DCP), these relations have not yet been established. Previous studies have shown little consistency in results, and the underlying experimental methods have not been established broadly. There is an urgent need to address these issues as the application of 3DCP in practice projects is growing rapidly. Therefore, RILEM TC 304-ADC: Assessment of Additively Manufactured Concrete Materials and Structures has set up a large interlaboratory study into the mechanical properties of 3D printed concrete. This paper presents key elements of the experimental approach detailed in the Study Plan and the supporting considerations. Furthermore, it reports on the response, consisting of 34 contributions from 30 laboratories, detailing global coverage, properties of the applied mixture designs and characteristics of the printing facilities that have been used. Subsequently, some fundamental results from compression, flexural, and E-modulus testing are presented and—considering cast specimens as a reference—discussed. On average, a reduction in strength was found in compression and E-modulus (all tested orientations). For flexure, on the other hand, an increase was found in two testing orientations, while a decrease was observed in the third orientation. Importantly, even though the applied experimental methods were found to be reasonably appropriate to obtain the required data, the differences found between individual contributions are significant and sometimes non-consistent, suggesting that testing on specific material-facility combinations is necessary to reliably determine the mechanical properties of objects produced from them. Furthermore, a theoretical framework needs to be developed to further explain the variations that were observed. Extensive analyses of all acquired data are out of the scope of this contribution, but presented in two associated papers, whereas a third presents the data management approach used to process the approximately 5,000 test results.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.