Kairat-II-X方程中数据驱动孤子动力学和参数发现的一种新的混合解析- pinns方法

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Ghulam Hussain Tipu, AllahBakhsh Yazdani Cherati, Hamid Momeni, Fengping Yao
{"title":"Kairat-II-X方程中数据驱动孤子动力学和参数发现的一种新的混合解析- pinns方法","authors":"Ghulam Hussain Tipu,&nbsp;AllahBakhsh Yazdani Cherati,&nbsp;Hamid Momeni,&nbsp;Fengping Yao","doi":"10.1140/epjp/s13360-025-06850-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a hybrid analytical and machine learning framework to investigate soliton dynamics in the recently proposed Kairat-II-X (K-II-X) equation, a model unifying features of the Kairat-II and Kairat-X systems. The equation captures geometric properties of differential curves relevant to physical and engineering phenomena. In the first phase, we employ novel polynomial expansion neural networks (PENNs), embedding trial functions into neural architectures where neurons represent polynomial–Riccati operator. This enables the generation of novel analytical soliton structures, including hyperbolic, trigonometric, exponential, and rational functions, in both single-soliton and two-soliton forms. In the second phase, we apply physics-informed neural networks (PINNs) with parameter regularization for numerical soliton solutions and parameter identification. The PINNs framework accurately captures one-kink, two-kink, and periodic dynamics, demonstrating strong agreement with analytical benchmarks and low error metrics. Furthermore, the method effectively recovers nonlinear coefficients from noisy data, highlighting robustness in parameter inference. This integrated symbolic–numeric approach bridges analytical solution construction and machine learning modeling, enhancing soliton solution discovery and providing a versatile platform for simulating complex nonlinear wave phenomena. The framework holds promising implications for applied mathematics, physics, and engineering. </p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid analytical–PINNs approach for data-driven soliton dynamics and parameter discovery in the Kairat-II-X equation\",\"authors\":\"Ghulam Hussain Tipu,&nbsp;AllahBakhsh Yazdani Cherati,&nbsp;Hamid Momeni,&nbsp;Fengping Yao\",\"doi\":\"10.1140/epjp/s13360-025-06850-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a hybrid analytical and machine learning framework to investigate soliton dynamics in the recently proposed Kairat-II-X (K-II-X) equation, a model unifying features of the Kairat-II and Kairat-X systems. The equation captures geometric properties of differential curves relevant to physical and engineering phenomena. In the first phase, we employ novel polynomial expansion neural networks (PENNs), embedding trial functions into neural architectures where neurons represent polynomial–Riccati operator. This enables the generation of novel analytical soliton structures, including hyperbolic, trigonometric, exponential, and rational functions, in both single-soliton and two-soliton forms. In the second phase, we apply physics-informed neural networks (PINNs) with parameter regularization for numerical soliton solutions and parameter identification. The PINNs framework accurately captures one-kink, two-kink, and periodic dynamics, demonstrating strong agreement with analytical benchmarks and low error metrics. Furthermore, the method effectively recovers nonlinear coefficients from noisy data, highlighting robustness in parameter inference. This integrated symbolic–numeric approach bridges analytical solution construction and machine learning modeling, enhancing soliton solution discovery and providing a versatile platform for simulating complex nonlinear wave phenomena. The framework holds promising implications for applied mathematics, physics, and engineering. </p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06850-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06850-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个混合分析和机器学习框架来研究最近提出的Kairat-II- x (K-II-X)方程中的孤子动力学,该方程是一个统一Kairat-II和Kairat-X系统特征的模型。该方程捕捉了与物理和工程现象相关的微分曲线的几何特性。在第一阶段,我们采用新颖的多项式展开神经网络(penn),将试验函数嵌入神经元表示多项式- riccati算子的神经结构中。这使得产生新的解析孤子结构,包括双曲,三角,指数和有理函数,在单孤子和双孤子形式。在第二阶段,我们应用具有参数正则化的物理信息神经网络(pinn)进行数值孤子解和参数识别。pinn框架准确地捕获单扭、双扭和周期性动态,显示出与分析基准和低误差度量的强烈一致性。此外,该方法能有效地从噪声数据中恢复非线性系数,突出了参数推理的鲁棒性。这种集成的符号-数值方法连接了解析解构建和机器学习建模,增强了孤子解的发现,并为模拟复杂的非线性波动现象提供了一个通用的平台。该框架对应用数学、物理和工程具有很好的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel hybrid analytical–PINNs approach for data-driven soliton dynamics and parameter discovery in the Kairat-II-X equation

This study presents a hybrid analytical and machine learning framework to investigate soliton dynamics in the recently proposed Kairat-II-X (K-II-X) equation, a model unifying features of the Kairat-II and Kairat-X systems. The equation captures geometric properties of differential curves relevant to physical and engineering phenomena. In the first phase, we employ novel polynomial expansion neural networks (PENNs), embedding trial functions into neural architectures where neurons represent polynomial–Riccati operator. This enables the generation of novel analytical soliton structures, including hyperbolic, trigonometric, exponential, and rational functions, in both single-soliton and two-soliton forms. In the second phase, we apply physics-informed neural networks (PINNs) with parameter regularization for numerical soliton solutions and parameter identification. The PINNs framework accurately captures one-kink, two-kink, and periodic dynamics, demonstrating strong agreement with analytical benchmarks and low error metrics. Furthermore, the method effectively recovers nonlinear coefficients from noisy data, highlighting robustness in parameter inference. This integrated symbolic–numeric approach bridges analytical solution construction and machine learning modeling, enhancing soliton solution discovery and providing a versatile platform for simulating complex nonlinear wave phenomena. The framework holds promising implications for applied mathematics, physics, and engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信