从非均匀光场到均匀光场积分空腔的时间动力学解耦

IF 2 3区 物理与天体物理 Q3 OPTICS
Zhiyang Sun, Zhiguo Zhang, Bin Yu, Yongda Wang, Lei Yang
{"title":"从非均匀光场到均匀光场积分空腔的时间动力学解耦","authors":"Zhiyang Sun,&nbsp;Zhiguo Zhang,&nbsp;Bin Yu,&nbsp;Yongda Wang,&nbsp;Lei Yang","doi":"10.1007/s00340-025-08564-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the light propagation characteristics within an integrating cavity, focusing on the transition from a non-uniform light field (NULF) to a uniform light field (ULF). We challenge the conventional assumption in integrating cavity theory that postulates the immediate establishment of a ULF upon light entry. Employing both experimental and simulation approaches, we derive the time constant of the integrating cavity under ULF conditions and measure the cavity’s transient and steady-state responses. Our findings reveal that while a brief NULF phase precedes the ULF, the total radiant flux within the cavity adheres to the ULF propagation law from the onset. This study demonstrates that the NULF can be treated as an approximation of the ULF in terms of total radiant flux variation within an integrating cavity. Our study not only provides empirical validation for integrating cavity theories based on the ULF assumption but also presents compelling evidence of their efficacy in cavities with diverse geometries.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling temporal dynamics in integrating cavities from nonuniform to uniform light fields\",\"authors\":\"Zhiyang Sun,&nbsp;Zhiguo Zhang,&nbsp;Bin Yu,&nbsp;Yongda Wang,&nbsp;Lei Yang\",\"doi\":\"10.1007/s00340-025-08564-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate the light propagation characteristics within an integrating cavity, focusing on the transition from a non-uniform light field (NULF) to a uniform light field (ULF). We challenge the conventional assumption in integrating cavity theory that postulates the immediate establishment of a ULF upon light entry. Employing both experimental and simulation approaches, we derive the time constant of the integrating cavity under ULF conditions and measure the cavity’s transient and steady-state responses. Our findings reveal that while a brief NULF phase precedes the ULF, the total radiant flux within the cavity adheres to the ULF propagation law from the onset. This study demonstrates that the NULF can be treated as an approximation of the ULF in terms of total radiant flux variation within an integrating cavity. Our study not only provides empirical validation for integrating cavity theories based on the ULF assumption but also presents compelling evidence of their efficacy in cavities with diverse geometries.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08564-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08564-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了光在积分腔内的传播特性,重点研究了从非均匀光场(NULF)到均匀光场(ULF)的转变。我们挑战传统的假设,在整合腔理论,假设立即建立一个超光速的光进入。采用实验和模拟相结合的方法,推导出了在超光速条件下积分腔的时间常数,并测量了积分腔的瞬态和稳态响应。我们的研究结果表明,虽然短暂的NULF阶段先于ULF,但腔内的总辐射通量从一开始就遵循ULF传播规律。这项研究表明,就积分腔内的总辐射通量变化而言,NULF可以被视为ULF的近似值。我们的研究不仅为整合基于ULF假设的空腔理论提供了经验验证,而且为其在不同几何形状的空腔中的有效性提供了令人信服的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unravelling temporal dynamics in integrating cavities from nonuniform to uniform light fields

In this study, we investigate the light propagation characteristics within an integrating cavity, focusing on the transition from a non-uniform light field (NULF) to a uniform light field (ULF). We challenge the conventional assumption in integrating cavity theory that postulates the immediate establishment of a ULF upon light entry. Employing both experimental and simulation approaches, we derive the time constant of the integrating cavity under ULF conditions and measure the cavity’s transient and steady-state responses. Our findings reveal that while a brief NULF phase precedes the ULF, the total radiant flux within the cavity adheres to the ULF propagation law from the onset. This study demonstrates that the NULF can be treated as an approximation of the ULF in terms of total radiant flux variation within an integrating cavity. Our study not only provides empirical validation for integrating cavity theories based on the ULF assumption but also presents compelling evidence of their efficacy in cavities with diverse geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信