{"title":"模拟微重力对溶解氧限制条件下硝化污泥活性的影响","authors":"Shin-ichi Akizuki, Junichi Ida","doi":"10.1007/s12217-025-10189-1","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrification supports long-term human stays in space by converting urine-derived ammonia into harmless nitrate, which aids in crop production. In space, oxygen availability is often limited due to the constraints of closed life support systems and need for strict resource management. In this study, we aimed to investigate the effects of simulated microgravity (SMG) on the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in nitrifying sludge under oxygen-limited conditions. Notably, no difference in AOB activity was observed between the normal gravity (NG; 1.92 ± 0.27 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) and SMG (2.08 ± 0.33 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) conditions. In contrast, NOB activity was significantly elevated under SMG condition (1.79 ± 0.09 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) compared to that under NG condition (0.83 ± 0.08 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>). Oxygen balance analysis revealed competition for available oxygen between NOB and other aerobic bacteria under NG; however, this competition was mitigated under SMG. Gravity-dependent convection caused a high buoyant plume velocity of 8.6 × 10<sup>−3</sup> cm s<sup>−1</sup> under NG, indicating nitrite diffused within the AOB- and NOB-containing flocs. However, this convection was suppressed under SMG, resulting in a decreased plum velocity of 2.7 × 10<sup>−4</sup> cm s<sup>−1</sup>, indicating that nitrite accumulated around the flocs, enhancing the nitrite-to-nitrate metabolism. To the best of our knowledge, this study is the first to quantitatively evaluate the effect of microgravity on the activity of nitrifying sludge under oxygen-limited conditions and outline the potential mechanism by which NOB activity is maintained at a higher level under microgravity than under terrestrial gravity.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Simulated Microgravity on the Activity of Nitrifying Sludge Under Dissolved Oxygen-Limited Conditions\",\"authors\":\"Shin-ichi Akizuki, Junichi Ida\",\"doi\":\"10.1007/s12217-025-10189-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrification supports long-term human stays in space by converting urine-derived ammonia into harmless nitrate, which aids in crop production. In space, oxygen availability is often limited due to the constraints of closed life support systems and need for strict resource management. In this study, we aimed to investigate the effects of simulated microgravity (SMG) on the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in nitrifying sludge under oxygen-limited conditions. Notably, no difference in AOB activity was observed between the normal gravity (NG; 1.92 ± 0.27 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) and SMG (2.08 ± 0.33 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) conditions. In contrast, NOB activity was significantly elevated under SMG condition (1.79 ± 0.09 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>) compared to that under NG condition (0.83 ± 0.08 mg-N g-VSS<sup>−1</sup> h<sup>−1</sup>). Oxygen balance analysis revealed competition for available oxygen between NOB and other aerobic bacteria under NG; however, this competition was mitigated under SMG. Gravity-dependent convection caused a high buoyant plume velocity of 8.6 × 10<sup>−3</sup> cm s<sup>−1</sup> under NG, indicating nitrite diffused within the AOB- and NOB-containing flocs. However, this convection was suppressed under SMG, resulting in a decreased plum velocity of 2.7 × 10<sup>−4</sup> cm s<sup>−1</sup>, indicating that nitrite accumulated around the flocs, enhancing the nitrite-to-nitrate metabolism. To the best of our knowledge, this study is the first to quantitatively evaluate the effect of microgravity on the activity of nitrifying sludge under oxygen-limited conditions and outline the potential mechanism by which NOB activity is maintained at a higher level under microgravity than under terrestrial gravity.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"37 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-025-10189-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-025-10189-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Impact of Simulated Microgravity on the Activity of Nitrifying Sludge Under Dissolved Oxygen-Limited Conditions
Nitrification supports long-term human stays in space by converting urine-derived ammonia into harmless nitrate, which aids in crop production. In space, oxygen availability is often limited due to the constraints of closed life support systems and need for strict resource management. In this study, we aimed to investigate the effects of simulated microgravity (SMG) on the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in nitrifying sludge under oxygen-limited conditions. Notably, no difference in AOB activity was observed between the normal gravity (NG; 1.92 ± 0.27 mg-N g-VSS−1 h−1) and SMG (2.08 ± 0.33 mg-N g-VSS−1 h−1) conditions. In contrast, NOB activity was significantly elevated under SMG condition (1.79 ± 0.09 mg-N g-VSS−1 h−1) compared to that under NG condition (0.83 ± 0.08 mg-N g-VSS−1 h−1). Oxygen balance analysis revealed competition for available oxygen between NOB and other aerobic bacteria under NG; however, this competition was mitigated under SMG. Gravity-dependent convection caused a high buoyant plume velocity of 8.6 × 10−3 cm s−1 under NG, indicating nitrite diffused within the AOB- and NOB-containing flocs. However, this convection was suppressed under SMG, resulting in a decreased plum velocity of 2.7 × 10−4 cm s−1, indicating that nitrite accumulated around the flocs, enhancing the nitrite-to-nitrate metabolism. To the best of our knowledge, this study is the first to quantitatively evaluate the effect of microgravity on the activity of nitrifying sludge under oxygen-limited conditions and outline the potential mechanism by which NOB activity is maintained at a higher level under microgravity than under terrestrial gravity.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology