若干与凸函数相关的三次多项式的隶属性

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Manju Yadav, Sushma Gupta, Sukhjit Singh
{"title":"若干与凸函数相关的三次多项式的隶属性","authors":"Manju Yadav,&nbsp;Sushma Gupta,&nbsp;Sukhjit Singh","doi":"10.1007/s40995-025-01794-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(V_3(z,f)= (3/4)z+(3/10)a_2z^2+(1/20)a_3z^3\\)</span> and <span>\\(\\sigma _3^{(\\alpha )}(z,f)=z+(2/(2+\\alpha ))a_2z^2+(2/[(2+\\alpha )(1+\\alpha )])a_3z^3\\)</span> be the cubic polynomials representing, respectively, the 3rd de la Vall<span>\\(\\acute{e}\\)</span>e Poussin mean and the 3rd Ces<span>\\(\\grave{a}\\)</span>ro mean of order <span>\\(\\alpha \\; (\\alpha \\ge 0)\\)</span> of a normalized analytic function <span>\\(f(z) = z+\\sum _{k=2}^{\\infty } a_k z^k.\\)</span> If <span>\\(\\mathscr {K}\\)</span> denotes the usual class of normalized convex univalent functions in the open unit disc <span>\\({\\mathbb {D}}\\)</span> in the complex plane centered at the origin, we demonstrate that <span>\\(V_3(z,f)\\prec \\sigma _3^{(\\alpha )}(z,f)\\)</span> in <span>\\(\\mathbb {D}\\)</span> for all <span>\\(f\\in \\mathscr {K}\\)</span> and for all real numbers <span>\\(\\alpha\\)</span> satisfying <span>\\(3\\le \\alpha \\le 19\\)</span>. For all <span>\\(\\alpha \\ge 19,\\)</span> we also identify a sharp real number (multiplier) <span>\\(\\gamma (\\alpha )\\)</span> such that <span>\\(\\gamma (\\alpha )\\cdot V_3(z,f)\\prec \\sigma _3^{(\\alpha )}(z,f)\\)</span> in <span>\\(\\mathbb {D}\\)</span> for all <span>\\(f\\in \\mathscr {K}.\\)</span> Here ‘<span>\\(\\prec\\)</span>’ denotes subordination between two analytic functions.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 4","pages":"1115 - 1123"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subordination of Some Cubic Polynomials Associated with Convex Functions\",\"authors\":\"Manju Yadav,&nbsp;Sushma Gupta,&nbsp;Sukhjit Singh\",\"doi\":\"10.1007/s40995-025-01794-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(V_3(z,f)= (3/4)z+(3/10)a_2z^2+(1/20)a_3z^3\\\\)</span> and <span>\\\\(\\\\sigma _3^{(\\\\alpha )}(z,f)=z+(2/(2+\\\\alpha ))a_2z^2+(2/[(2+\\\\alpha )(1+\\\\alpha )])a_3z^3\\\\)</span> be the cubic polynomials representing, respectively, the 3rd de la Vall<span>\\\\(\\\\acute{e}\\\\)</span>e Poussin mean and the 3rd Ces<span>\\\\(\\\\grave{a}\\\\)</span>ro mean of order <span>\\\\(\\\\alpha \\\\; (\\\\alpha \\\\ge 0)\\\\)</span> of a normalized analytic function <span>\\\\(f(z) = z+\\\\sum _{k=2}^{\\\\infty } a_k z^k.\\\\)</span> If <span>\\\\(\\\\mathscr {K}\\\\)</span> denotes the usual class of normalized convex univalent functions in the open unit disc <span>\\\\({\\\\mathbb {D}}\\\\)</span> in the complex plane centered at the origin, we demonstrate that <span>\\\\(V_3(z,f)\\\\prec \\\\sigma _3^{(\\\\alpha )}(z,f)\\\\)</span> in <span>\\\\(\\\\mathbb {D}\\\\)</span> for all <span>\\\\(f\\\\in \\\\mathscr {K}\\\\)</span> and for all real numbers <span>\\\\(\\\\alpha\\\\)</span> satisfying <span>\\\\(3\\\\le \\\\alpha \\\\le 19\\\\)</span>. For all <span>\\\\(\\\\alpha \\\\ge 19,\\\\)</span> we also identify a sharp real number (multiplier) <span>\\\\(\\\\gamma (\\\\alpha )\\\\)</span> such that <span>\\\\(\\\\gamma (\\\\alpha )\\\\cdot V_3(z,f)\\\\prec \\\\sigma _3^{(\\\\alpha )}(z,f)\\\\)</span> in <span>\\\\(\\\\mathbb {D}\\\\)</span> for all <span>\\\\(f\\\\in \\\\mathscr {K}.\\\\)</span> Here ‘<span>\\\\(\\\\prec\\\\)</span>’ denotes subordination between two analytic functions.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 4\",\"pages\":\"1115 - 1123\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01794-1\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01794-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

设\(V_3(z,f)= (3/4)z+(3/10)a_2z^2+(1/20)a_3z^3\)和\(\sigma _3^{(\alpha )}(z,f)=z+(2/(2+\alpha ))a_2z^2+(2/[(2+\alpha )(1+\alpha )])a_3z^3\)为三次多项式,分别表示一个归一化解析函数的第3次de la Vall \(\acute{e}\) e Poussin均值和第3次Ces \(\grave{a}\) ro均值\(\alpha \; (\alpha \ge 0)\)阶\(f(z) = z+\sum _{k=2}^{\infty } a_k z^k.\)如果\(\mathscr {K}\)表示以原点为中心的复平面上的开单位圆盘\({\mathbb {D}}\)中通常的一类归一化凸一价函数,我们证明\(V_3(z,f)\prec \sigma _3^{(\alpha )}(z,f)\)在\(\mathbb {D}\)中对于所有\(f\in \mathscr {K}\)和所有实数\(\alpha\)满足\(3\le \alpha \le 19\)。对于所有的\(\alpha \ge 19,\),我们还确定了一个尖锐的实数(乘数)\(\gamma (\alpha )\),使得\(\mathbb {D}\)中的\(\gamma (\alpha )\cdot V_3(z,f)\prec \sigma _3^{(\alpha )}(z,f)\)对于所有的\(f\in \mathscr {K}.\),这里的“\(\prec\)”表示两个解析函数之间的从属关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subordination of Some Cubic Polynomials Associated with Convex Functions

Let \(V_3(z,f)= (3/4)z+(3/10)a_2z^2+(1/20)a_3z^3\) and \(\sigma _3^{(\alpha )}(z,f)=z+(2/(2+\alpha ))a_2z^2+(2/[(2+\alpha )(1+\alpha )])a_3z^3\) be the cubic polynomials representing, respectively, the 3rd de la Vall\(\acute{e}\)e Poussin mean and the 3rd Ces\(\grave{a}\)ro mean of order \(\alpha \; (\alpha \ge 0)\) of a normalized analytic function \(f(z) = z+\sum _{k=2}^{\infty } a_k z^k.\) If \(\mathscr {K}\) denotes the usual class of normalized convex univalent functions in the open unit disc \({\mathbb {D}}\) in the complex plane centered at the origin, we demonstrate that \(V_3(z,f)\prec \sigma _3^{(\alpha )}(z,f)\) in \(\mathbb {D}\) for all \(f\in \mathscr {K}\) and for all real numbers \(\alpha\) satisfying \(3\le \alpha \le 19\). For all \(\alpha \ge 19,\) we also identify a sharp real number (multiplier) \(\gamma (\alpha )\) such that \(\gamma (\alpha )\cdot V_3(z,f)\prec \sigma _3^{(\alpha )}(z,f)\) in \(\mathbb {D}\) for all \(f\in \mathscr {K}.\) Here ‘\(\prec\)’ denotes subordination between two analytic functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信