hfmi处理预疲劳焊接桥梁细部裂纹深度影响评价

IF 2.5 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Martin Edgren, Joakim Hedegård, Zuheir Barsoum
{"title":"hfmi处理预疲劳焊接桥梁细部裂纹深度影响评价","authors":"Martin Edgren,&nbsp;Joakim Hedegård,&nbsp;Zuheir Barsoum","doi":"10.1007/s40194-025-02102-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the utilization of high-frequency mechanical impact (HFMI) treatment for rehabilitating pre-fatigued steel bridge components. It incorporates time of flight diffraction (TOFD) for precise crack depth measurement, alongside strain range drop monitoring to enhance assessment accuracy. The experimental setup involves fillet weld specimens with cope hole geometry, using S355MC steel. The HFMI treatment process employs 3-mm diameter pins to achieve an HFMI indentation depth of 0.2 mm. The study demonstrated that HFMI treatment effectively extends the fatigue life of steel bridge components, showing significant improvements for cracks up to 1.2-mm deep. TOFD measurements, validated against manual optical measurements, consistently indicated crack depths within ± 0.1-mm accuracy. This precision is critical for assessing the HFMI treatment’s effectiveness in repairing pre-fatigued structures. The strain range drop method was used as a stop criterion to evaluate crack depth in real time, effectively reducing the number of TOFD measurements required during fatigue crack growth testing. The experimental results showed that HFMI treatment could improve fatigue life, moving specimens’ performance well above the IIW recommended FAT125 curve for treated steel details. In conclusion, this investigation confirms the significant potential of HFMI treatment for extending the life of pre-fatigued steel bridge components. The combined use of TOFD and strain range drop monitoring provides a robust framework for accurately assessing and optimizing HFMI treatment.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 8","pages":"2443 - 2458"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-025-02102-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluation of crack depth impact on HFMI-treated pre-fatigued welded bridge details\",\"authors\":\"Martin Edgren,&nbsp;Joakim Hedegård,&nbsp;Zuheir Barsoum\",\"doi\":\"10.1007/s40194-025-02102-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the utilization of high-frequency mechanical impact (HFMI) treatment for rehabilitating pre-fatigued steel bridge components. It incorporates time of flight diffraction (TOFD) for precise crack depth measurement, alongside strain range drop monitoring to enhance assessment accuracy. The experimental setup involves fillet weld specimens with cope hole geometry, using S355MC steel. The HFMI treatment process employs 3-mm diameter pins to achieve an HFMI indentation depth of 0.2 mm. The study demonstrated that HFMI treatment effectively extends the fatigue life of steel bridge components, showing significant improvements for cracks up to 1.2-mm deep. TOFD measurements, validated against manual optical measurements, consistently indicated crack depths within ± 0.1-mm accuracy. This precision is critical for assessing the HFMI treatment’s effectiveness in repairing pre-fatigued structures. The strain range drop method was used as a stop criterion to evaluate crack depth in real time, effectively reducing the number of TOFD measurements required during fatigue crack growth testing. The experimental results showed that HFMI treatment could improve fatigue life, moving specimens’ performance well above the IIW recommended FAT125 curve for treated steel details. In conclusion, this investigation confirms the significant potential of HFMI treatment for extending the life of pre-fatigued steel bridge components. The combined use of TOFD and strain range drop monitoring provides a robust framework for accurately assessing and optimizing HFMI treatment.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 8\",\"pages\":\"2443 - 2458\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40194-025-02102-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-025-02102-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-02102-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用高频机械冲击(HFMI)治疗修复预疲劳钢桥组件。它结合了飞行时间衍射(TOFD)来精确测量裂纹深度,以及应变范围下降监测,以提高评估精度。实验装置采用S355MC钢,采用配合孔几何形状的角焊缝试样。HFMI处理工艺采用直径3毫米的针,以实现0.2毫米的HFMI压痕深度。研究表明,HFMI处理有效地延长了钢桥构件的疲劳寿命,对深度为1.2 mm的裂纹有显著改善。TOFD测量,通过手动光学测量验证,一致显示裂缝深度在±0.1 mm的精度内。这种精度对于评估HFMI治疗修复预疲劳结构的有效性至关重要。采用应变范围下降法作为实时评估裂纹深度的停止准则,有效减少了疲劳裂纹扩展试验中所需的TOFD测量次数。实验结果表明,HFMI处理可以提高疲劳寿命,使试件的移动性能远高于IIW推荐的FAT125曲线。总之,本研究证实了HFMI处理在延长预疲劳钢桥构件寿命方面的巨大潜力。结合使用TOFD和应变范围下降监测为准确评估和优化HFMI治疗提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of crack depth impact on HFMI-treated pre-fatigued welded bridge details

This study focuses on the utilization of high-frequency mechanical impact (HFMI) treatment for rehabilitating pre-fatigued steel bridge components. It incorporates time of flight diffraction (TOFD) for precise crack depth measurement, alongside strain range drop monitoring to enhance assessment accuracy. The experimental setup involves fillet weld specimens with cope hole geometry, using S355MC steel. The HFMI treatment process employs 3-mm diameter pins to achieve an HFMI indentation depth of 0.2 mm. The study demonstrated that HFMI treatment effectively extends the fatigue life of steel bridge components, showing significant improvements for cracks up to 1.2-mm deep. TOFD measurements, validated against manual optical measurements, consistently indicated crack depths within ± 0.1-mm accuracy. This precision is critical for assessing the HFMI treatment’s effectiveness in repairing pre-fatigued structures. The strain range drop method was used as a stop criterion to evaluate crack depth in real time, effectively reducing the number of TOFD measurements required during fatigue crack growth testing. The experimental results showed that HFMI treatment could improve fatigue life, moving specimens’ performance well above the IIW recommended FAT125 curve for treated steel details. In conclusion, this investigation confirms the significant potential of HFMI treatment for extending the life of pre-fatigued steel bridge components. The combined use of TOFD and strain range drop monitoring provides a robust framework for accurately assessing and optimizing HFMI treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信