等离子体放电改性自支撑NiFe-LDH/Ti3C2Tx/NF复合材料的催化性能

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-05-22 DOI:10.1007/s11581-025-06397-9
Sikai Peng, Huimin Yu, Ya Wen, Weiliang Peng
{"title":"等离子体放电改性自支撑NiFe-LDH/Ti3C2Tx/NF复合材料的催化性能","authors":"Sikai Peng,&nbsp;Huimin Yu,&nbsp;Ya Wen,&nbsp;Weiliang Peng","doi":"10.1007/s11581-025-06397-9","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen production via water electrolysis is gaining attention as a method of renewable energy storage for its efficiency and eco-friendliness. However, efficient catalysts are still lacking to overcome the slow kinetics of the oxygen evolution reaction (OER). In this study, we synthesized a composite catalyst consisting of NiFe-layered double hydroxide (NiFe-LDH) and titanium carbide MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) for catalyzing the oxygen evolution reaction in electrochemical water splitting. The composite catalyst was optimized through a plasma discharge treatment for introducing oxygen vacancy and integrating it with nickel foam (NF) as support. This optimized catalyst O<sub>v</sub>-NiFe-LDH/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/NF exhibits remarkable catalytic activity and stability. At a current density of 100 mA/cm<sup>2</sup>, the required overpotential is a mere 229 mV, and it sustains high catalytic performance even after 20 h of operation at a substantial current density of 1000 mA/cm<sup>2</sup>. Our findings offer valuable insights into the development of efficient OER catalysts for water splitting applications.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 7","pages":"7155 - 7168"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OER Catalytic performances of self-supporting NiFe-LDH/Ti3C2Tx/NF composite modified by plasma discharge treatment\",\"authors\":\"Sikai Peng,&nbsp;Huimin Yu,&nbsp;Ya Wen,&nbsp;Weiliang Peng\",\"doi\":\"10.1007/s11581-025-06397-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen production via water electrolysis is gaining attention as a method of renewable energy storage for its efficiency and eco-friendliness. However, efficient catalysts are still lacking to overcome the slow kinetics of the oxygen evolution reaction (OER). In this study, we synthesized a composite catalyst consisting of NiFe-layered double hydroxide (NiFe-LDH) and titanium carbide MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) for catalyzing the oxygen evolution reaction in electrochemical water splitting. The composite catalyst was optimized through a plasma discharge treatment for introducing oxygen vacancy and integrating it with nickel foam (NF) as support. This optimized catalyst O<sub>v</sub>-NiFe-LDH/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/NF exhibits remarkable catalytic activity and stability. At a current density of 100 mA/cm<sup>2</sup>, the required overpotential is a mere 229 mV, and it sustains high catalytic performance even after 20 h of operation at a substantial current density of 1000 mA/cm<sup>2</sup>. Our findings offer valuable insights into the development of efficient OER catalysts for water splitting applications.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 7\",\"pages\":\"7155 - 7168\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06397-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06397-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水电解制氢作为一种高效、环保的可再生能源储存方式正受到人们的关注。然而,目前还缺乏有效的催化剂来克服析氧反应(OER)的缓慢动力学。在本研究中,我们合成了由nife层状双氢氧化物(NiFe-LDH)和碳化钛MXene (Ti3C2Tx)组成的复合催化剂,用于催化电化学水分解中的析氧反应。采用等离子体放电处理引入氧空位,并以泡沫镍(NF)为载体对复合催化剂进行优化。优化后的ov - nfe - ldh /Ti3C2Tx/NF催化剂具有良好的催化活性和稳定性。在电流密度为100 mA/cm2时,所需过电位仅为229 mV,即使在1000 mA/cm2的大电流密度下运行20小时后,它仍保持高催化性能。我们的发现为开发高效的OER催化剂用于水裂解应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OER Catalytic performances of self-supporting NiFe-LDH/Ti3C2Tx/NF composite modified by plasma discharge treatment

Hydrogen production via water electrolysis is gaining attention as a method of renewable energy storage for its efficiency and eco-friendliness. However, efficient catalysts are still lacking to overcome the slow kinetics of the oxygen evolution reaction (OER). In this study, we synthesized a composite catalyst consisting of NiFe-layered double hydroxide (NiFe-LDH) and titanium carbide MXene (Ti3C2Tx) for catalyzing the oxygen evolution reaction in electrochemical water splitting. The composite catalyst was optimized through a plasma discharge treatment for introducing oxygen vacancy and integrating it with nickel foam (NF) as support. This optimized catalyst Ov-NiFe-LDH/Ti3C2Tx/NF exhibits remarkable catalytic activity and stability. At a current density of 100 mA/cm2, the required overpotential is a mere 229 mV, and it sustains high catalytic performance even after 20 h of operation at a substantial current density of 1000 mA/cm2. Our findings offer valuable insights into the development of efficient OER catalysts for water splitting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信