纳米锑修饰氧化锡:水热合成高性能超级电容器电极

IF 5.8 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Umesh D. Babar, Bapuso M. Babar, Onkar C. Pore, Priyanka P. Chavan, Suhas H. Sutar, Sarfraj H. Mujawar, Ashok D. Chougale, Amar M. Patil, Seong Chan Jun, Ebrahim Alhajri, Nilesh R. Chodankar, Pradip D. Kamble
{"title":"纳米锑修饰氧化锡:水热合成高性能超级电容器电极","authors":"Umesh D. Babar,&nbsp;Bapuso M. Babar,&nbsp;Onkar C. Pore,&nbsp;Priyanka P. Chavan,&nbsp;Suhas H. Sutar,&nbsp;Sarfraj H. Mujawar,&nbsp;Ashok D. Chougale,&nbsp;Amar M. Patil,&nbsp;Seong Chan Jun,&nbsp;Ebrahim Alhajri,&nbsp;Nilesh R. Chodankar,&nbsp;Pradip D. Kamble","doi":"10.1007/s42823-025-00866-x","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the energy storage capabilities of supercapacitors (SCs) while preserving their electrochemical performance is crucial for their widespread application. Our research focuses on developing Sb-modified tin oxide (ATO) nanoparticles via a scalable hydrothermal process, offering substantial potential in this domain. The tetragonal nanoparticle structure provides abundant active sites and a highly porous pathway, facilitating rapid and efficient energy storage. Additionally, tin's varied oxidation states significantly enhance redox capacitance. Electrochemical measurements demonstrate ATO's promise as an advanced SC electrode, achieving a peak specific capacitance of 332 F/g at 3 mA/cm<sup>2</sup>, with robust redox capacitance confirmed through kinetic analysis. Moreover, the ATO electrode exhibits exceptional capacitance retention over 2000 cycles. This study establishes ATO as a leading candidate for future energy storage applications, underscoring its pivotal role in advancing energy storage technologies.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 4","pages":"1611 - 1624"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimony-modified tin oxide nanoparticles: hydrothermal synthesis for high-performance supercapacitor electrodes\",\"authors\":\"Umesh D. Babar,&nbsp;Bapuso M. Babar,&nbsp;Onkar C. Pore,&nbsp;Priyanka P. Chavan,&nbsp;Suhas H. Sutar,&nbsp;Sarfraj H. Mujawar,&nbsp;Ashok D. Chougale,&nbsp;Amar M. Patil,&nbsp;Seong Chan Jun,&nbsp;Ebrahim Alhajri,&nbsp;Nilesh R. Chodankar,&nbsp;Pradip D. Kamble\",\"doi\":\"10.1007/s42823-025-00866-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhancing the energy storage capabilities of supercapacitors (SCs) while preserving their electrochemical performance is crucial for their widespread application. Our research focuses on developing Sb-modified tin oxide (ATO) nanoparticles via a scalable hydrothermal process, offering substantial potential in this domain. The tetragonal nanoparticle structure provides abundant active sites and a highly porous pathway, facilitating rapid and efficient energy storage. Additionally, tin's varied oxidation states significantly enhance redox capacitance. Electrochemical measurements demonstrate ATO's promise as an advanced SC electrode, achieving a peak specific capacitance of 332 F/g at 3 mA/cm<sup>2</sup>, with robust redox capacitance confirmed through kinetic analysis. Moreover, the ATO electrode exhibits exceptional capacitance retention over 2000 cycles. This study establishes ATO as a leading candidate for future energy storage applications, underscoring its pivotal role in advancing energy storage technologies.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 4\",\"pages\":\"1611 - 1624\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-025-00866-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00866-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高超级电容器的能量存储能力,同时保持其电化学性能是其广泛应用的关键。我们的研究重点是通过可扩展的水热工艺开发sb修饰的氧化锡纳米颗粒,在该领域提供了巨大的潜力。四边形纳米颗粒结构提供了丰富的活性位点和高度多孔的通道,促进了快速高效的能量储存。此外,锡的不同氧化态显著增强了氧化还原电容。电化学测量证明了ATO作为一种先进的SC电极的前景,在3 mA/cm2下实现了332 F/g的峰值比电容,并通过动力学分析证实了其强大的氧化还原电容。此外,ATO电极在2000次循环中表现出优异的电容保持能力。这项研究确立了ATO作为未来储能应用的主要候选者,强调了其在推进储能技术方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimony-modified tin oxide nanoparticles: hydrothermal synthesis for high-performance supercapacitor electrodes

Enhancing the energy storage capabilities of supercapacitors (SCs) while preserving their electrochemical performance is crucial for their widespread application. Our research focuses on developing Sb-modified tin oxide (ATO) nanoparticles via a scalable hydrothermal process, offering substantial potential in this domain. The tetragonal nanoparticle structure provides abundant active sites and a highly porous pathway, facilitating rapid and efficient energy storage. Additionally, tin's varied oxidation states significantly enhance redox capacitance. Electrochemical measurements demonstrate ATO's promise as an advanced SC electrode, achieving a peak specific capacitance of 332 F/g at 3 mA/cm2, with robust redox capacitance confirmed through kinetic analysis. Moreover, the ATO electrode exhibits exceptional capacitance retention over 2000 cycles. This study establishes ATO as a leading candidate for future energy storage applications, underscoring its pivotal role in advancing energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信