Al0.43Ga0.57As/La2O3: pt基CSDG MOSFET氢传感的电分析方法

IF 1.4 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Naveenbalaji Gowthaman, Viranjay M. Srivastava
{"title":"Al0.43Ga0.57As/La2O3: pt基CSDG MOSFET氢传感的电分析方法","authors":"Naveenbalaji Gowthaman,&nbsp;Viranjay M. Srivastava","doi":"10.1007/s10470-025-02447-4","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology has enabled novel sensing approaches with significant potential for environmental monitoring and technological advancements. This research explores the integration of nano-materials in hydrogen sensing, leveraging advanced fabrication techniques to analyze the electrical characteristics of Al<sub>0.43</sub>Ga<sub>0.57</sub>As Cylindrical Surrounding Double-Gate (CSDG) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). The incorporation of nano-materials enhances sensitivity and selectivity, enabling hydrogen gas detection at extremely low concentrations. The sensor maintains a robust response even at elevated temperatures, such as 393 K. The results indicate peak frequencies of 57.36 GHz at 1.105 mA, 56.95 GHz at 1.161 mA, and 56.54 GHz at 1.222 mA for InGaAs (4.6 V), InGaAs (5.0 V), and AlGaAs (1.3 V) configurations, respectively. Thermodynamic analysis reveals hydrogen adsorption enthalpies of approximately − 0.58 and − 0.19 kJ/mol for DG and CSDG MOSFET devices. This interdisciplinary approach highlights the synergy between nano-material-based hydrogen sensing and fabrication technology, offering a transformative solution for hydrogen detection in industrial processes and emerging energy applications. Furthermore, the strategic implementation of fabrication techniques enhances the precision and reproducibility of sensor devices, ensuring consistent and reliable performance.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"124 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10470-025-02447-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrical analytical approach for hydrogen sensing of Al0.43Ga0.57As/La2O3: Pt-based CSDG MOSFET\",\"authors\":\"Naveenbalaji Gowthaman,&nbsp;Viranjay M. Srivastava\",\"doi\":\"10.1007/s10470-025-02447-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanotechnology has enabled novel sensing approaches with significant potential for environmental monitoring and technological advancements. This research explores the integration of nano-materials in hydrogen sensing, leveraging advanced fabrication techniques to analyze the electrical characteristics of Al<sub>0.43</sub>Ga<sub>0.57</sub>As Cylindrical Surrounding Double-Gate (CSDG) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). The incorporation of nano-materials enhances sensitivity and selectivity, enabling hydrogen gas detection at extremely low concentrations. The sensor maintains a robust response even at elevated temperatures, such as 393 K. The results indicate peak frequencies of 57.36 GHz at 1.105 mA, 56.95 GHz at 1.161 mA, and 56.54 GHz at 1.222 mA for InGaAs (4.6 V), InGaAs (5.0 V), and AlGaAs (1.3 V) configurations, respectively. Thermodynamic analysis reveals hydrogen adsorption enthalpies of approximately − 0.58 and − 0.19 kJ/mol for DG and CSDG MOSFET devices. This interdisciplinary approach highlights the synergy between nano-material-based hydrogen sensing and fabrication technology, offering a transformative solution for hydrogen detection in industrial processes and emerging energy applications. Furthermore, the strategic implementation of fabrication techniques enhances the precision and reproducibility of sensor devices, ensuring consistent and reliable performance.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"124 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10470-025-02447-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02447-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02447-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术使新的传感方法成为可能,对环境监测和技术进步具有巨大的潜力。本研究探索了纳米材料在氢传感中的集成,利用先进的制造技术分析了Al0.43Ga0.57As圆柱周围双栅(CSDG)金属氧化物半导体场效应晶体管(mosfet)的电特性。纳米材料的掺入提高了灵敏度和选择性,使氢气检测在极低浓度。该传感器即使在高温下(如393 K)也能保持稳定的响应。结果表明,InGaAs (4.6 V)、InGaAs (5.0 V)和AlGaAs (1.3 V)结构在1.105 mA、1.161 mA和1.222 mA时的峰值频率分别为57.36 GHz、56.95 GHz和56.54 GHz。热力学分析表明,DG和CSDG MOSFET器件的氢吸附焓分别为- 0.58和- 0.19 kJ/mol。这种跨学科的方法强调了基于纳米材料的氢传感和制造技术之间的协同作用,为工业过程和新兴能源应用中的氢检测提供了一种变革性的解决方案。此外,制造技术的战略实施提高了传感器设备的精度和再现性,确保了一致和可靠的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical analytical approach for hydrogen sensing of Al0.43Ga0.57As/La2O3: Pt-based CSDG MOSFET

Nanotechnology has enabled novel sensing approaches with significant potential for environmental monitoring and technological advancements. This research explores the integration of nano-materials in hydrogen sensing, leveraging advanced fabrication techniques to analyze the electrical characteristics of Al0.43Ga0.57As Cylindrical Surrounding Double-Gate (CSDG) Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). The incorporation of nano-materials enhances sensitivity and selectivity, enabling hydrogen gas detection at extremely low concentrations. The sensor maintains a robust response even at elevated temperatures, such as 393 K. The results indicate peak frequencies of 57.36 GHz at 1.105 mA, 56.95 GHz at 1.161 mA, and 56.54 GHz at 1.222 mA for InGaAs (4.6 V), InGaAs (5.0 V), and AlGaAs (1.3 V) configurations, respectively. Thermodynamic analysis reveals hydrogen adsorption enthalpies of approximately − 0.58 and − 0.19 kJ/mol for DG and CSDG MOSFET devices. This interdisciplinary approach highlights the synergy between nano-material-based hydrogen sensing and fabrication technology, offering a transformative solution for hydrogen detection in industrial processes and emerging energy applications. Furthermore, the strategic implementation of fabrication techniques enhances the precision and reproducibility of sensor devices, ensuring consistent and reliable performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信