{"title":"砂的强度和剪胀从其图像为基础的内在属性","authors":"Lin Gao, Junxing Zheng, Dong Wang, Yu Miao","doi":"10.1007/s10035-025-01551-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in image-based particle shape characterization allow reliably and rapidly determining particle roundness and sphericity of a statistically significant large number of particles, which enables systematic investigation of the influence of roundness and sphericity on macroscopic engineering behaviors such as strength and dilatancy of sands. This study collects 22 sands with a wide range of particle sphericity, roundness, gradations, and mean particle sizes. A total of 207 direct shear tests are prepared at various relative densities and normal stresses to establish the database. This database is further augmented by experimental data of another 97 sands from published geotechnical engineering sources. Influences of image-based sphericity, roundness, and gradation on the frictional and dilational components of soil strength are analyzed, leading to observations that angular, elongated, and well-graded sands exhibit larger values of critical strength, dilatancy, and peak strength. A material parameter is proposed by integrating roundness and gradation that captures the joint effects of intrinsic properties. The material parameter is used to develop predictive models for critical friction angles, dilation angles, and peak friction angles. The effectiveness and accuracy of the predicted models are validated by various published geotechnical experimental data. The material parameter and predictive models provide insights into relationships between micro particle level properties and macro mechanical behavior of sands and enable researchers and practitioners to rapidly estimate the strength and dilatancy of sands without performing laboratory tests.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength and dilatancy of sands from their image-based intrinsic properties\",\"authors\":\"Lin Gao, Junxing Zheng, Dong Wang, Yu Miao\",\"doi\":\"10.1007/s10035-025-01551-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advances in image-based particle shape characterization allow reliably and rapidly determining particle roundness and sphericity of a statistically significant large number of particles, which enables systematic investigation of the influence of roundness and sphericity on macroscopic engineering behaviors such as strength and dilatancy of sands. This study collects 22 sands with a wide range of particle sphericity, roundness, gradations, and mean particle sizes. A total of 207 direct shear tests are prepared at various relative densities and normal stresses to establish the database. This database is further augmented by experimental data of another 97 sands from published geotechnical engineering sources. Influences of image-based sphericity, roundness, and gradation on the frictional and dilational components of soil strength are analyzed, leading to observations that angular, elongated, and well-graded sands exhibit larger values of critical strength, dilatancy, and peak strength. A material parameter is proposed by integrating roundness and gradation that captures the joint effects of intrinsic properties. The material parameter is used to develop predictive models for critical friction angles, dilation angles, and peak friction angles. The effectiveness and accuracy of the predicted models are validated by various published geotechnical experimental data. The material parameter and predictive models provide insights into relationships between micro particle level properties and macro mechanical behavior of sands and enable researchers and practitioners to rapidly estimate the strength and dilatancy of sands without performing laboratory tests.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01551-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01551-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strength and dilatancy of sands from their image-based intrinsic properties
Recent advances in image-based particle shape characterization allow reliably and rapidly determining particle roundness and sphericity of a statistically significant large number of particles, which enables systematic investigation of the influence of roundness and sphericity on macroscopic engineering behaviors such as strength and dilatancy of sands. This study collects 22 sands with a wide range of particle sphericity, roundness, gradations, and mean particle sizes. A total of 207 direct shear tests are prepared at various relative densities and normal stresses to establish the database. This database is further augmented by experimental data of another 97 sands from published geotechnical engineering sources. Influences of image-based sphericity, roundness, and gradation on the frictional and dilational components of soil strength are analyzed, leading to observations that angular, elongated, and well-graded sands exhibit larger values of critical strength, dilatancy, and peak strength. A material parameter is proposed by integrating roundness and gradation that captures the joint effects of intrinsic properties. The material parameter is used to develop predictive models for critical friction angles, dilation angles, and peak friction angles. The effectiveness and accuracy of the predicted models are validated by various published geotechnical experimental data. The material parameter and predictive models provide insights into relationships between micro particle level properties and macro mechanical behavior of sands and enable researchers and practitioners to rapidly estimate the strength and dilatancy of sands without performing laboratory tests.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.