{"title":"一个涉及测度约束和范畴约束的广义多项式的替代方程","authors":"Z. Boros, R. Menzer","doi":"10.1007/s10474-024-01498-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a generalized polynomial <span>\\( f \\colon \\mathbb{R}^N \\to \\mathbb{R} \\)</span> that satisfies the additional equation <span>\\( f(x) f(y) = 0 \\)</span> for the pairs <span>\\( (x,y) \\in D \\)</span>, where <span>\\( D \\subseteq \\mathbb{R}^{2N} \\)</span> has a positive Lebesgue measure or it is a second category Baire set. We prove that <span>\\( f(x) = 0 \\)</span> for all <span>\\( x \\in \\mathbb{R}^N \\)</span>. In fact, the first statement is established in a considerably more general setting. Then we formulate statements concerning the signs of generalized monomials <span>\\( g \\colon \\mathbb{R} \\to \\mathbb{R} \\)</span> of even degree that satisfy the inequality <span>\\( g(x) g(y) \\geq 0 \\)</span> for the pairs \n<span>\\( (x,y) \\in E \\)</span>, where \n<span>\\( E \\subseteq \\mathbb{R}^{2} \\)</span> has a positive planar Lebesgue measure or it is a second category Baire set.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 2","pages":"376 - 394"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01498-9.pdf","citationCount":"0","resultStr":"{\"title\":\"An alternative equation for generalized polynomials involving measure and category constraints\",\"authors\":\"Z. Boros, R. Menzer\",\"doi\":\"10.1007/s10474-024-01498-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider a generalized polynomial <span>\\\\( f \\\\colon \\\\mathbb{R}^N \\\\to \\\\mathbb{R} \\\\)</span> that satisfies the additional equation <span>\\\\( f(x) f(y) = 0 \\\\)</span> for the pairs <span>\\\\( (x,y) \\\\in D \\\\)</span>, where <span>\\\\( D \\\\subseteq \\\\mathbb{R}^{2N} \\\\)</span> has a positive Lebesgue measure or it is a second category Baire set. We prove that <span>\\\\( f(x) = 0 \\\\)</span> for all <span>\\\\( x \\\\in \\\\mathbb{R}^N \\\\)</span>. In fact, the first statement is established in a considerably more general setting. Then we formulate statements concerning the signs of generalized monomials <span>\\\\( g \\\\colon \\\\mathbb{R} \\\\to \\\\mathbb{R} \\\\)</span> of even degree that satisfy the inequality <span>\\\\( g(x) g(y) \\\\geq 0 \\\\)</span> for the pairs \\n<span>\\\\( (x,y) \\\\in E \\\\)</span>, where \\n<span>\\\\( E \\\\subseteq \\\\mathbb{R}^{2} \\\\)</span> has a positive planar Lebesgue measure or it is a second category Baire set.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"175 2\",\"pages\":\"376 - 394\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-024-01498-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01498-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01498-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑一个广义多项式 \( f \colon \mathbb{R}^N \to \mathbb{R} \) 它满足附加方程 \( f(x) f(y) = 0 \) 对于配对 \( (x,y) \in D \),其中 \( D \subseteq \mathbb{R}^{2N} \) 有一个正的勒贝格测度或者它是第二类贝尔集。我们证明 \( f(x) = 0 \) 对所有人 \( x \in \mathbb{R}^N \). 事实上,第一种说法是在相当普遍的背景下建立起来的。然后,我们给出了关于广义单项式符号的表述 \( g \colon \mathbb{R} \to \mathbb{R} \) 满足不等式的偶数次 \( g(x) g(y) \geq 0 \) 对于配对 \( (x,y) \in E \),其中 \( E \subseteq \mathbb{R}^{2} \) 有一个正的平面勒贝格测度或者它是一个二类贝尔集。
An alternative equation for generalized polynomials involving measure and category constraints
In this paper we consider a generalized polynomial \( f \colon \mathbb{R}^N \to \mathbb{R} \) that satisfies the additional equation \( f(x) f(y) = 0 \) for the pairs \( (x,y) \in D \), where \( D \subseteq \mathbb{R}^{2N} \) has a positive Lebesgue measure or it is a second category Baire set. We prove that \( f(x) = 0 \) for all \( x \in \mathbb{R}^N \). In fact, the first statement is established in a considerably more general setting. Then we formulate statements concerning the signs of generalized monomials \( g \colon \mathbb{R} \to \mathbb{R} \) of even degree that satisfy the inequality \( g(x) g(y) \geq 0 \) for the pairs
\( (x,y) \in E \), where
\( E \subseteq \mathbb{R}^{2} \) has a positive planar Lebesgue measure or it is a second category Baire set.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.