用于高性能超级电容器的SiC@Fe2O3-x纳米线中的快速氧空位工程

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gui-Hai Chen, Ze-Xi Yang, Shan-Liang Chen, Lan Jiang, Qiao Liu, Lin Wang, Wei-You Yang, Zhi-Sheng Wu, Hui-jun Li, Wei-Jun Li
{"title":"用于高性能超级电容器的SiC@Fe2O3-x纳米线中的快速氧空位工程","authors":"Gui-Hai Chen,&nbsp;Ze-Xi Yang,&nbsp;Shan-Liang Chen,&nbsp;Lan Jiang,&nbsp;Qiao Liu,&nbsp;Lin Wang,&nbsp;Wei-You Yang,&nbsp;Zhi-Sheng Wu,&nbsp;Hui-jun Li,&nbsp;Wei-Jun Li","doi":"10.1007/s12598-025-03381-0","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal oxides (TMOs), thanks to their elevated theoretical capacitance and pseudocapacitive properties, are of particular interest in exploring the advanced supercapacitor electrode materials. The present work reports the rapid laser-assisted synthesis of SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> anode materials with engineered oxygen vacancies in seconds, which improve the charge transport, redox activity, and structural stability, thus facilitating a substantial enhancement in electrochemical performance. As a result, the resultant SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm<sup>−2</sup>, and retain 86.7% capacitance over 10,000 cycles. Furthermore, the assembled asymmetric supercapacitors (ASC), employing SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> as the negative electrode and Ni(OH)<sub>2</sub> as the positive electrode, delivers a 1.5 V operating voltage, an energy density of 197 μWh cm<sup>−2</sup>, and 80.6% capacitance retention after 14,000 cycles, representing their promise toward the applications in next-generation energy storage materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7293 - 7305"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid oxygen vacancy engineering in SiC@Fe2O3-x nanowires for high-performance supercapacitors\",\"authors\":\"Gui-Hai Chen,&nbsp;Ze-Xi Yang,&nbsp;Shan-Liang Chen,&nbsp;Lan Jiang,&nbsp;Qiao Liu,&nbsp;Lin Wang,&nbsp;Wei-You Yang,&nbsp;Zhi-Sheng Wu,&nbsp;Hui-jun Li,&nbsp;Wei-Jun Li\",\"doi\":\"10.1007/s12598-025-03381-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transition metal oxides (TMOs), thanks to their elevated theoretical capacitance and pseudocapacitive properties, are of particular interest in exploring the advanced supercapacitor electrode materials. The present work reports the rapid laser-assisted synthesis of SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> anode materials with engineered oxygen vacancies in seconds, which improve the charge transport, redox activity, and structural stability, thus facilitating a substantial enhancement in electrochemical performance. As a result, the resultant SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm<sup>−2</sup>, and retain 86.7% capacitance over 10,000 cycles. Furthermore, the assembled asymmetric supercapacitors (ASC), employing SiC@Fe<sub>2</sub>O<sub>3-<i>x</i></sub> as the negative electrode and Ni(OH)<sub>2</sub> as the positive electrode, delivers a 1.5 V operating voltage, an energy density of 197 μWh cm<sup>−2</sup>, and 80.6% capacitance retention after 14,000 cycles, representing their promise toward the applications in next-generation energy storage materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 10\",\"pages\":\"7293 - 7305\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03381-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03381-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物(TMOs)由于其较高的理论电容和赝电容特性,在探索先进的超级电容器电极材料方面具有特别的兴趣。本研究报告了激光辅助合成SiC@Fe2O3-x阳极材料的工程氧空位在几秒钟内,提高了电荷传输,氧化还原活性和结构稳定性,从而促进了电化学性能的大幅提高。结果表明,SiC@Fe2O3-x纳米线在5 mA cm−2时的面电容为1082.16,在10,000次循环中保持86.7%的电容。此外,以SiC@Fe2O3-x为负极,Ni(OH)2为正极的组装非对称超级电容器(ASC)在14000次循环后,工作电压为1.5 V,能量密度为197 μWh cm - 2,电容保持率为80.6%,有望应用于下一代储能材料。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid oxygen vacancy engineering in SiC@Fe2O3-x nanowires for high-performance supercapacitors

Transition metal oxides (TMOs), thanks to their elevated theoretical capacitance and pseudocapacitive properties, are of particular interest in exploring the advanced supercapacitor electrode materials. The present work reports the rapid laser-assisted synthesis of SiC@Fe2O3-x anode materials with engineered oxygen vacancies in seconds, which improve the charge transport, redox activity, and structural stability, thus facilitating a substantial enhancement in electrochemical performance. As a result, the resultant SiC@Fe2O3-x nanowires exhibit excellent performances with an areal capacitance of 1082.16 at 5 mA cm−2, and retain 86.7% capacitance over 10,000 cycles. Furthermore, the assembled asymmetric supercapacitors (ASC), employing SiC@Fe2O3-x as the negative electrode and Ni(OH)2 as the positive electrode, delivers a 1.5 V operating voltage, an energy density of 197 μWh cm−2, and 80.6% capacitance retention after 14,000 cycles, representing their promise toward the applications in next-generation energy storage materials.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信