{"title":"从汉密尔顿-雅可比到玻姆:为什么波函数不只是另一种作用","authors":"Arnaud Amblard, Aurélien Drezet","doi":"10.1007/s10701-025-00865-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the physical meaning of the wave function in Bohmian mechanics (BM), addressing the debate between causal and nomological interpretations. While BM postulates particles with definite trajectories guided by the wave function, the ontological status of the wave function itself remains contested. Critics of the causal interpretation argue that the wave function’s high-dimensionality and lack of back-reaction disqualify it as a physical entity. Proponents of the nomological interpretation, drawing parallels to the classical Hamiltonian, propose that the wave function is a “law-like\" entity. However, this view faces challenges, including reliance on speculative quantum gravity frameworks (e.g., the Wheeler-DeWitt equation) and conceptual ambiguities about the nature of “nomological entities\". By systematically comparing BM to Hamilton-Jacobi theory, this paper highlights disanalogies between the wave function and the classical action function. These differences—particularly the wave function’s dynamical necessity and irreducibility—support a <i>sui generis</i> interpretation, where the wave function represents a novel ontological category unique to quantum theory. The paper concludes that the wave function’s role in BM resists classical analogies, demanding a metaphysical framework that accommodates its non-local, high-dimensional, and dynamically irreducible nature.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Hamilton-Jacobi to Bohm: Why the Wave Function Isn’t Just Another Action\",\"authors\":\"Arnaud Amblard, Aurélien Drezet\",\"doi\":\"10.1007/s10701-025-00865-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines the physical meaning of the wave function in Bohmian mechanics (BM), addressing the debate between causal and nomological interpretations. While BM postulates particles with definite trajectories guided by the wave function, the ontological status of the wave function itself remains contested. Critics of the causal interpretation argue that the wave function’s high-dimensionality and lack of back-reaction disqualify it as a physical entity. Proponents of the nomological interpretation, drawing parallels to the classical Hamiltonian, propose that the wave function is a “law-like\\\" entity. However, this view faces challenges, including reliance on speculative quantum gravity frameworks (e.g., the Wheeler-DeWitt equation) and conceptual ambiguities about the nature of “nomological entities\\\". By systematically comparing BM to Hamilton-Jacobi theory, this paper highlights disanalogies between the wave function and the classical action function. These differences—particularly the wave function’s dynamical necessity and irreducibility—support a <i>sui generis</i> interpretation, where the wave function represents a novel ontological category unique to quantum theory. The paper concludes that the wave function’s role in BM resists classical analogies, demanding a metaphysical framework that accommodates its non-local, high-dimensional, and dynamically irreducible nature.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00865-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00865-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
From Hamilton-Jacobi to Bohm: Why the Wave Function Isn’t Just Another Action
This paper examines the physical meaning of the wave function in Bohmian mechanics (BM), addressing the debate between causal and nomological interpretations. While BM postulates particles with definite trajectories guided by the wave function, the ontological status of the wave function itself remains contested. Critics of the causal interpretation argue that the wave function’s high-dimensionality and lack of back-reaction disqualify it as a physical entity. Proponents of the nomological interpretation, drawing parallels to the classical Hamiltonian, propose that the wave function is a “law-like" entity. However, this view faces challenges, including reliance on speculative quantum gravity frameworks (e.g., the Wheeler-DeWitt equation) and conceptual ambiguities about the nature of “nomological entities". By systematically comparing BM to Hamilton-Jacobi theory, this paper highlights disanalogies between the wave function and the classical action function. These differences—particularly the wave function’s dynamical necessity and irreducibility—support a sui generis interpretation, where the wave function represents a novel ontological category unique to quantum theory. The paper concludes that the wave function’s role in BM resists classical analogies, demanding a metaphysical framework that accommodates its non-local, high-dimensional, and dynamically irreducible nature.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.