Giuseppe Feo, Francesco Giordano, Sara Milito, Marcella Niglio, Maria Lucia Parrella
{"title":"利用空间动态面板数据模型对时空数据进行聚类和分类","authors":"Giuseppe Feo, Francesco Giordano, Sara Milito, Marcella Niglio, Maria Lucia Parrella","doi":"10.1007/s11634-024-00620-7","DOIUrl":null,"url":null,"abstract":"<div><p>The class of <i>Spatial Dynamic Panel Data</i> models has been proposed in the socio-econometric literature to analyze spatio-temporal data. In this paper we consider a particular variant of such models, where the set of spatial units is assumed to be partitioned into clusters and the parameters of the model are assumed to be homogeneous within clusters and heterogeneous across clusters. For this model, assuming that the true partition is unknown, we propose a new clustering procedure and a validation test, based on a multiple testing approach, that help to choose the best configuration of model, for a given observed dataset, by estimating the optimal number of clusters and the best partition of units. The validity of the proposed procedures has been shown both theoretically and empirically, on simulated and real data, also compared to alternative methods.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"19 classification and related methods”","pages":"387 - 435"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering and classification of spatio-temporal data using spatial dynamic panel data models\",\"authors\":\"Giuseppe Feo, Francesco Giordano, Sara Milito, Marcella Niglio, Maria Lucia Parrella\",\"doi\":\"10.1007/s11634-024-00620-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The class of <i>Spatial Dynamic Panel Data</i> models has been proposed in the socio-econometric literature to analyze spatio-temporal data. In this paper we consider a particular variant of such models, where the set of spatial units is assumed to be partitioned into clusters and the parameters of the model are assumed to be homogeneous within clusters and heterogeneous across clusters. For this model, assuming that the true partition is unknown, we propose a new clustering procedure and a validation test, based on a multiple testing approach, that help to choose the best configuration of model, for a given observed dataset, by estimating the optimal number of clusters and the best partition of units. The validity of the proposed procedures has been shown both theoretically and empirically, on simulated and real data, also compared to alternative methods.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"19 classification and related methods”\",\"pages\":\"387 - 435\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-024-00620-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-024-00620-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Clustering and classification of spatio-temporal data using spatial dynamic panel data models
The class of Spatial Dynamic Panel Data models has been proposed in the socio-econometric literature to analyze spatio-temporal data. In this paper we consider a particular variant of such models, where the set of spatial units is assumed to be partitioned into clusters and the parameters of the model are assumed to be homogeneous within clusters and heterogeneous across clusters. For this model, assuming that the true partition is unknown, we propose a new clustering procedure and a validation test, based on a multiple testing approach, that help to choose the best configuration of model, for a given observed dataset, by estimating the optimal number of clusters and the best partition of units. The validity of the proposed procedures has been shown both theoretically and empirically, on simulated and real data, also compared to alternative methods.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.