Yael Kempe, Janne M. Koornneef, Gareth R. Davies, Ofir Tirosh, Ingrid. L. Chinn, Yaakov Weiss
{"title":"Voorspoed金刚石成钻流体微量元素及Sr-Nd-Pb同位素组成","authors":"Yael Kempe, Janne M. Koornneef, Gareth R. Davies, Ofir Tirosh, Ingrid. L. Chinn, Yaakov Weiss","doi":"10.1007/s00710-025-00940-2","DOIUrl":null,"url":null,"abstract":"<div><p>Trace element and Sr-Nd-Pb isotope compositions of high-density fluids (HDFs) trapped in diamonds provide key insights into mantle processes and diamond formation. This study focuses on diamonds containing different HDF types from the Voorspoed carbonate-rich olivine lamproite (CROL) in the Kroonstad cluster, South Africa. Their trace elements reveal signatures varying between primitive mantle-normalized incompatible enriched fractionated patterns mostly characterizing saline HDFs, and overall flatter patterns for silicic-carbonatitic compositions. The HDFs Sr-Nd-Pb isotope compositions vary markedly; <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70647–0.71556, <sup>143</sup>Nd/<sup>144</sup>Nd = 0.5113–0.5122, <sup>206</sup>Pb/<sup>204</sup>Pb = 17.36–18.77, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.41–15.71 and <sup>208</sup>Pb/<sup>204</sup>Pb = 37.47–39.39. A Rb–Sr age of 780 ± 220 Ma recorded by the saline HDFs does not correspond with the timing of their host diamonds formation (~ 160–220 Ma; based on nitrogen aggregation estimates). The age records an earlier metasomatic event associated with formation of the silicic-carbonatitic HDFs and diamond (~ 330–730 Ma; based on nitrogen aggregation estimates), that likely took place during the Pan-African Orogeny. We suggest that Neoproterozoic subduction-related saline fluids infiltrated different lithologies in the Kroonstad lithospheric mantle. Upon interaction with eclogite, melting occurred and diamonds crystallized, forming the older silicic-carbonatitic HDF-bearing diamonds with lower alkalis and La/Nb, Th/Nb, La/Sm ratios. Concurrently saline fluids that penetrated harzburgite had little interaction with the host rock and were stored as metasomes. These metasomes were locally re-melted during subsequent thermal event/s, potentially the Karoo flood basalt volcanism (~ 180 Ma), to form saline HDFs and their host diamonds. Later metasomatism that involved high-Mg carbonatitic HDFs was smaller in scale than the previous diamond-forming events and took place at < 160 Ma (< 30 Myr before the Voorspoed CROL erupted). The similarities in trace element and isotope compositions between Voorspoed HDFs and Kroonstad CROLs, support some degree of shared lithospheric origin or similar metasomatic processes that controlled their compositions.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":"119 3","pages":"465 - 487"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00710-025-00940-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Trace element and Sr-Nd-Pb isotope compositions of diamond-forming fluids in Voorspoed diamonds\",\"authors\":\"Yael Kempe, Janne M. Koornneef, Gareth R. Davies, Ofir Tirosh, Ingrid. L. Chinn, Yaakov Weiss\",\"doi\":\"10.1007/s00710-025-00940-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trace element and Sr-Nd-Pb isotope compositions of high-density fluids (HDFs) trapped in diamonds provide key insights into mantle processes and diamond formation. This study focuses on diamonds containing different HDF types from the Voorspoed carbonate-rich olivine lamproite (CROL) in the Kroonstad cluster, South Africa. Their trace elements reveal signatures varying between primitive mantle-normalized incompatible enriched fractionated patterns mostly characterizing saline HDFs, and overall flatter patterns for silicic-carbonatitic compositions. The HDFs Sr-Nd-Pb isotope compositions vary markedly; <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70647–0.71556, <sup>143</sup>Nd/<sup>144</sup>Nd = 0.5113–0.5122, <sup>206</sup>Pb/<sup>204</sup>Pb = 17.36–18.77, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.41–15.71 and <sup>208</sup>Pb/<sup>204</sup>Pb = 37.47–39.39. A Rb–Sr age of 780 ± 220 Ma recorded by the saline HDFs does not correspond with the timing of their host diamonds formation (~ 160–220 Ma; based on nitrogen aggregation estimates). The age records an earlier metasomatic event associated with formation of the silicic-carbonatitic HDFs and diamond (~ 330–730 Ma; based on nitrogen aggregation estimates), that likely took place during the Pan-African Orogeny. We suggest that Neoproterozoic subduction-related saline fluids infiltrated different lithologies in the Kroonstad lithospheric mantle. Upon interaction with eclogite, melting occurred and diamonds crystallized, forming the older silicic-carbonatitic HDF-bearing diamonds with lower alkalis and La/Nb, Th/Nb, La/Sm ratios. Concurrently saline fluids that penetrated harzburgite had little interaction with the host rock and were stored as metasomes. These metasomes were locally re-melted during subsequent thermal event/s, potentially the Karoo flood basalt volcanism (~ 180 Ma), to form saline HDFs and their host diamonds. Later metasomatism that involved high-Mg carbonatitic HDFs was smaller in scale than the previous diamond-forming events and took place at < 160 Ma (< 30 Myr before the Voorspoed CROL erupted). The similarities in trace element and isotope compositions between Voorspoed HDFs and Kroonstad CROLs, support some degree of shared lithospheric origin or similar metasomatic processes that controlled their compositions.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":\"119 3\",\"pages\":\"465 - 487\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00710-025-00940-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-025-00940-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-025-00940-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Trace element and Sr-Nd-Pb isotope compositions of diamond-forming fluids in Voorspoed diamonds
Trace element and Sr-Nd-Pb isotope compositions of high-density fluids (HDFs) trapped in diamonds provide key insights into mantle processes and diamond formation. This study focuses on diamonds containing different HDF types from the Voorspoed carbonate-rich olivine lamproite (CROL) in the Kroonstad cluster, South Africa. Their trace elements reveal signatures varying between primitive mantle-normalized incompatible enriched fractionated patterns mostly characterizing saline HDFs, and overall flatter patterns for silicic-carbonatitic compositions. The HDFs Sr-Nd-Pb isotope compositions vary markedly; 87Sr/86Sr = 0.70647–0.71556, 143Nd/144Nd = 0.5113–0.5122, 206Pb/204Pb = 17.36–18.77, 207Pb/204Pb = 15.41–15.71 and 208Pb/204Pb = 37.47–39.39. A Rb–Sr age of 780 ± 220 Ma recorded by the saline HDFs does not correspond with the timing of their host diamonds formation (~ 160–220 Ma; based on nitrogen aggregation estimates). The age records an earlier metasomatic event associated with formation of the silicic-carbonatitic HDFs and diamond (~ 330–730 Ma; based on nitrogen aggregation estimates), that likely took place during the Pan-African Orogeny. We suggest that Neoproterozoic subduction-related saline fluids infiltrated different lithologies in the Kroonstad lithospheric mantle. Upon interaction with eclogite, melting occurred and diamonds crystallized, forming the older silicic-carbonatitic HDF-bearing diamonds with lower alkalis and La/Nb, Th/Nb, La/Sm ratios. Concurrently saline fluids that penetrated harzburgite had little interaction with the host rock and were stored as metasomes. These metasomes were locally re-melted during subsequent thermal event/s, potentially the Karoo flood basalt volcanism (~ 180 Ma), to form saline HDFs and their host diamonds. Later metasomatism that involved high-Mg carbonatitic HDFs was smaller in scale than the previous diamond-forming events and took place at < 160 Ma (< 30 Myr before the Voorspoed CROL erupted). The similarities in trace element and isotope compositions between Voorspoed HDFs and Kroonstad CROLs, support some degree of shared lithospheric origin or similar metasomatic processes that controlled their compositions.
期刊介绍:
Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered.
Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.