前驱体粉末煅烧温度对Na0.52Bi0.48TiO3-δ结构和电性能的影响

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-05-19 DOI:10.1007/s11581-025-06378-y
Run Li, Pei Zhu, Jiaqiang Li, Wenlong Wang, Minghui Kong, Qiang Yang, Dejun Wang, Runru Liu
{"title":"前驱体粉末煅烧温度对Na0.52Bi0.48TiO3-δ结构和电性能的影响","authors":"Run Li,&nbsp;Pei Zhu,&nbsp;Jiaqiang Li,&nbsp;Wenlong Wang,&nbsp;Minghui Kong,&nbsp;Qiang Yang,&nbsp;Dejun Wang,&nbsp;Runru Liu","doi":"10.1007/s11581-025-06378-y","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of calcination temperature (600–850 °C) on the structure and electrical properties of Na<sub>0.52</sub>Bi<sub>0.48</sub>TiO<sub>3-δ</sub> (NBT) synthesized via solid-state reaction has been systematically investigated. The structure, morphology, and electrical properties of the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS), respectively. Perovskite phase formation initiates above 700 °C, with complete transformation occurring at higher temperatures. SEM analysis demonstrates grain size reduction and impurity emergence at temperatures exceeding 700 °C. Grain boundary conductivity (<i>σ</i><sub>gb</sub>) exhibits a non-monotonic dependence on calcination temperature: peak conductivity (2.1 × 10<sup>−3</sup> S/cm at 500 °C) was achieved at 650 °C, and minimum conductivity was observed at 850 °C. Activation energy dominates conductivity behavior rather than oxygen vacancy concentration. Maximum grain boundary conductivity occurs at 600 °C. Impurity coverage ratio emerges as the primary factor governing grain boundary conduction. Our work establishes calcination temperature as a critical process parameter for NBT-based materials, providing fundamental insights into conduction mechanisms in bismuth titanate systems. And it offers practical guidelines for optimizing solid-state synthesis of oxygen ion conductors. These findings advance the understanding of structure–property relationships in NBT materials and demonstrate the importance of thermal processing control for developing high-performance electrolytes in solid oxide fuel cells and related electrochemical devices. The work particularly highlights the competitive conductivity achievable through optimized calcination conditions without requiring compositional modification.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 7","pages":"7005 - 7015"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of calcination temperature of precursor powders on the structure and electrical properties of Na0.52Bi0.48TiO3-δ\",\"authors\":\"Run Li,&nbsp;Pei Zhu,&nbsp;Jiaqiang Li,&nbsp;Wenlong Wang,&nbsp;Minghui Kong,&nbsp;Qiang Yang,&nbsp;Dejun Wang,&nbsp;Runru Liu\",\"doi\":\"10.1007/s11581-025-06378-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of calcination temperature (600–850 °C) on the structure and electrical properties of Na<sub>0.52</sub>Bi<sub>0.48</sub>TiO<sub>3-δ</sub> (NBT) synthesized via solid-state reaction has been systematically investigated. The structure, morphology, and electrical properties of the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS), respectively. Perovskite phase formation initiates above 700 °C, with complete transformation occurring at higher temperatures. SEM analysis demonstrates grain size reduction and impurity emergence at temperatures exceeding 700 °C. Grain boundary conductivity (<i>σ</i><sub>gb</sub>) exhibits a non-monotonic dependence on calcination temperature: peak conductivity (2.1 × 10<sup>−3</sup> S/cm at 500 °C) was achieved at 650 °C, and minimum conductivity was observed at 850 °C. Activation energy dominates conductivity behavior rather than oxygen vacancy concentration. Maximum grain boundary conductivity occurs at 600 °C. Impurity coverage ratio emerges as the primary factor governing grain boundary conduction. Our work establishes calcination temperature as a critical process parameter for NBT-based materials, providing fundamental insights into conduction mechanisms in bismuth titanate systems. And it offers practical guidelines for optimizing solid-state synthesis of oxygen ion conductors. These findings advance the understanding of structure–property relationships in NBT materials and demonstrate the importance of thermal processing control for developing high-performance electrolytes in solid oxide fuel cells and related electrochemical devices. The work particularly highlights the competitive conductivity achievable through optimized calcination conditions without requiring compositional modification.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 7\",\"pages\":\"7005 - 7015\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06378-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06378-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

系统研究了煅烧温度(600 ~ 850℃)对固相反应合成的Na0.52Bi0.48TiO3-δ (NBT)结构和电性能的影响。采用x射线衍射(XRD)、扫描电镜(SEM)和电化学阻抗谱(EIS)对样品的结构、形貌和电学性能进行了表征。钙钛矿相的形成始于700°C以上,在更高的温度下发生完全转变。扫描电镜分析表明,温度超过700°C时晶粒尺寸减小,杂质析出。晶界电导率(σgb)与煅烧温度呈非单调关系,在650℃时达到峰值(500℃时为2.1 × 10−3 S/cm),在850℃时达到最小电导率。电导率行为主要由活化能而不是氧空位浓度决定。晶界电导率在600℃时达到最大值。杂质覆盖率是晶界导电的主要影响因素。我们的工作建立了煅烧温度作为nbt基材料的关键工艺参数,为钛酸铋体系的传导机制提供了基本的见解。为优化氧离子导体的固态合成提供了实用的指导。这些发现促进了对NBT材料结构-性能关系的理解,并证明了热处理控制对开发固体氧化物燃料电池和相关电化学器件中高性能电解质的重要性。这项工作特别强调了通过优化焙烧条件而无需修改成分即可实现的竞争性导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of calcination temperature of precursor powders on the structure and electrical properties of Na0.52Bi0.48TiO3-δ

The effect of calcination temperature (600–850 °C) on the structure and electrical properties of Na0.52Bi0.48TiO3-δ (NBT) synthesized via solid-state reaction has been systematically investigated. The structure, morphology, and electrical properties of the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS), respectively. Perovskite phase formation initiates above 700 °C, with complete transformation occurring at higher temperatures. SEM analysis demonstrates grain size reduction and impurity emergence at temperatures exceeding 700 °C. Grain boundary conductivity (σgb) exhibits a non-monotonic dependence on calcination temperature: peak conductivity (2.1 × 10−3 S/cm at 500 °C) was achieved at 650 °C, and minimum conductivity was observed at 850 °C. Activation energy dominates conductivity behavior rather than oxygen vacancy concentration. Maximum grain boundary conductivity occurs at 600 °C. Impurity coverage ratio emerges as the primary factor governing grain boundary conduction. Our work establishes calcination temperature as a critical process parameter for NBT-based materials, providing fundamental insights into conduction mechanisms in bismuth titanate systems. And it offers practical guidelines for optimizing solid-state synthesis of oxygen ion conductors. These findings advance the understanding of structure–property relationships in NBT materials and demonstrate the importance of thermal processing control for developing high-performance electrolytes in solid oxide fuel cells and related electrochemical devices. The work particularly highlights the competitive conductivity achievable through optimized calcination conditions without requiring compositional modification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信