论Appell多项式增强的Szász-Jakimovski-Leviatan β型积分算子的逼近

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao
{"title":"论Appell多项式增强的Szász-Jakimovski-Leviatan β型积分算子的逼近","authors":"Mohammad Ayman-Mursaleen,&nbsp;Md. Nasiruzzaman,&nbsp;Nadeem Rao","doi":"10.1007/s40995-025-01782-5","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this present article is to illustrate the approximation and related properties of Szász-Jakimovski-Leviatan type operators constructed using Beta functions. In this context, approximations are obtained by constructing a new class of Szász-Jakimovski-Leviatan Beta type operators, which are introduced through the Appell polynomials in Dunkl formulations. In the investigations, the approximation is studied in Korovkin’s and weighted Korovkin’s spaces involving local and global approximations. The rate of convergence is also obtained in terms of the weighted modulus of continuity, Lipschitz functions, Peetre’s <i>K</i>-functional, and some direct theorems. Consequently, in the final paragraph, approximations are studied through <i>A</i>-statistical convergence.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 4","pages":"1013 - 1022"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials\",\"authors\":\"Mohammad Ayman-Mursaleen,&nbsp;Md. Nasiruzzaman,&nbsp;Nadeem Rao\",\"doi\":\"10.1007/s40995-025-01782-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this present article is to illustrate the approximation and related properties of Szász-Jakimovski-Leviatan type operators constructed using Beta functions. In this context, approximations are obtained by constructing a new class of Szász-Jakimovski-Leviatan Beta type operators, which are introduced through the Appell polynomials in Dunkl formulations. In the investigations, the approximation is studied in Korovkin’s and weighted Korovkin’s spaces involving local and global approximations. The rate of convergence is also obtained in terms of the weighted modulus of continuity, Lipschitz functions, Peetre’s <i>K</i>-functional, and some direct theorems. Consequently, in the final paragraph, approximations are studied through <i>A</i>-statistical convergence.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"49 4\",\"pages\":\"1013 - 1022\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-025-01782-5\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01782-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是说明使用Beta函数构造的Szász-Jakimovski-Leviatan类型操作符的近似和相关属性。在这种情况下,通过构造一类新的Szász-Jakimovski-Leviatan Beta型算子获得近似,这些算子是通过Dunkl公式中的Appell多项式引入的。在研究中,研究了涉及局部逼近和全局逼近的Korovkin空间和加权Korovkin空间中的逼近。收敛速度也由连续性的加权模、Lipschitz函数、Peetre的k泛函和一些直接定理得到。因此,在最后一段中,通过a -统计收敛来研究近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials

The purpose of this present article is to illustrate the approximation and related properties of Szász-Jakimovski-Leviatan type operators constructed using Beta functions. In this context, approximations are obtained by constructing a new class of Szász-Jakimovski-Leviatan Beta type operators, which are introduced through the Appell polynomials in Dunkl formulations. In the investigations, the approximation is studied in Korovkin’s and weighted Korovkin’s spaces involving local and global approximations. The rate of convergence is also obtained in terms of the weighted modulus of continuity, Lipschitz functions, Peetre’s K-functional, and some direct theorems. Consequently, in the final paragraph, approximations are studied through A-statistical convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信