InSb/WSSe范德华异质结构的电子结构和光学性质研究

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Su Su, Xinyu Zhao, Xuewen Wang, Xiankui Lv, Weibin Zhang
{"title":"InSb/WSSe范德华异质结构的电子结构和光学性质研究","authors":"Su Su,&nbsp;Xinyu Zhao,&nbsp;Xuewen Wang,&nbsp;Xiankui Lv,&nbsp;Weibin Zhang","doi":"10.1140/epjb/s10051-025-00987-2","DOIUrl":null,"url":null,"abstract":"<div><p>Van der Waals heterostructures offer promising avenues for designing optoelectronic materials with tailored functionalities. Here, we employ first-principles calculations to investigate the structure, electronic, and optical properties of a novel InSb/WSSe heterojunction. The optimized structure reveals a stable interlayer spacing of 3.229 Å and exhibits type-II band alignment with a direct bandgap of 0.54 eV. Charge density analyses indicate electron transfer from the InSb layer to WSSe, resulting in an intrinsic interfacial electric field directed from InSb to WSSe. The heterojunction features a work function of 5.12 eV and demonstrates a notable enhancement of 37%. The InSb/WSSe heterojunction effectively combines the optical advantages of its constituent materials. Optical absorption is significantly boosted across the infrared, visible, and near-ultraviolet regions, with peak absorption in the visible spectrum reaching 20.63%—representing 44% increase than the monolayer components. In the infrared region, the absorption rate of the heterojunction breaks through from 0 to 14.96%. In the near-ultraviolet region, absorption improves by 26.6% compared to monolayer WSSe. Moreover, compared to monolayer WSSe, the heterostructure effectively suppresses optical transmittance (84.36%) and exhibits distinctive reflectance peaks. These findings highlight the InSb/WSSe heterojunction as a promising platform for broadband light-harvesting and next-generation optoelectronic applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the electronic structure and optical properties of InSb/WSSe van der Waals heterostructure\",\"authors\":\"Su Su,&nbsp;Xinyu Zhao,&nbsp;Xuewen Wang,&nbsp;Xiankui Lv,&nbsp;Weibin Zhang\",\"doi\":\"10.1140/epjb/s10051-025-00987-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Van der Waals heterostructures offer promising avenues for designing optoelectronic materials with tailored functionalities. Here, we employ first-principles calculations to investigate the structure, electronic, and optical properties of a novel InSb/WSSe heterojunction. The optimized structure reveals a stable interlayer spacing of 3.229 Å and exhibits type-II band alignment with a direct bandgap of 0.54 eV. Charge density analyses indicate electron transfer from the InSb layer to WSSe, resulting in an intrinsic interfacial electric field directed from InSb to WSSe. The heterojunction features a work function of 5.12 eV and demonstrates a notable enhancement of 37%. The InSb/WSSe heterojunction effectively combines the optical advantages of its constituent materials. Optical absorption is significantly boosted across the infrared, visible, and near-ultraviolet regions, with peak absorption in the visible spectrum reaching 20.63%—representing 44% increase than the monolayer components. In the infrared region, the absorption rate of the heterojunction breaks through from 0 to 14.96%. In the near-ultraviolet region, absorption improves by 26.6% compared to monolayer WSSe. Moreover, compared to monolayer WSSe, the heterostructure effectively suppresses optical transmittance (84.36%) and exhibits distinctive reflectance peaks. These findings highlight the InSb/WSSe heterojunction as a promising platform for broadband light-harvesting and next-generation optoelectronic applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-00987-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00987-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

范德华异质结构为设计具有定制功能的光电材料提供了有前途的途径。在这里,我们采用第一性原理计算来研究一种新型InSb/WSSe异质结的结构、电子和光学性质。优化后的结构显示出稳定的层间距为3.229 Å,具有ii型带对准,直接带隙为0.54 eV。电荷密度分析表明,电子从InSb层转移到WSSe层,导致从InSb到WSSe的本征界面电场。异质结的功函数为5.12 eV,提高了37%。InSb/WSSe异质结有效地结合了其组成材料的光学优势。红外、可见光和近紫外区的光吸收显著增强,可见光谱的峰值吸收达到20.63%,比单层成分增加44%。在红外区,异质结的吸收率突破了0 ~ 14.96%。在近紫外区,与单层WSSe相比,吸收率提高了26.6%。此外,与单层WSSe相比,异质结构有效地抑制了透光率(84.36%),并表现出明显的反射率峰。这些发现突出了InSb/WSSe异质结作为宽带光收集和下一代光电应用的有前途的平台。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the electronic structure and optical properties of InSb/WSSe van der Waals heterostructure

Van der Waals heterostructures offer promising avenues for designing optoelectronic materials with tailored functionalities. Here, we employ first-principles calculations to investigate the structure, electronic, and optical properties of a novel InSb/WSSe heterojunction. The optimized structure reveals a stable interlayer spacing of 3.229 Å and exhibits type-II band alignment with a direct bandgap of 0.54 eV. Charge density analyses indicate electron transfer from the InSb layer to WSSe, resulting in an intrinsic interfacial electric field directed from InSb to WSSe. The heterojunction features a work function of 5.12 eV and demonstrates a notable enhancement of 37%. The InSb/WSSe heterojunction effectively combines the optical advantages of its constituent materials. Optical absorption is significantly boosted across the infrared, visible, and near-ultraviolet regions, with peak absorption in the visible spectrum reaching 20.63%—representing 44% increase than the monolayer components. In the infrared region, the absorption rate of the heterojunction breaks through from 0 to 14.96%. In the near-ultraviolet region, absorption improves by 26.6% compared to monolayer WSSe. Moreover, compared to monolayer WSSe, the heterostructure effectively suppresses optical transmittance (84.36%) and exhibits distinctive reflectance peaks. These findings highlight the InSb/WSSe heterojunction as a promising platform for broadband light-harvesting and next-generation optoelectronic applications.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信