辐射阻尼Vlasov-Poisson系统经典解的整体存在性和急剧衰减估计

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Fucai Li, Man Wu
{"title":"辐射阻尼Vlasov-Poisson系统经典解的整体存在性和急剧衰减估计","authors":"Fucai Li,&nbsp;Man Wu","doi":"10.1007/s10955-025-03484-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the two-species Vlasov-Poisson system with a radiation damping term <span>\\(D^{[3]}(t)\\)</span> in the whole space <span>\\(\\mathbb {R}^3\\)</span>, which was introduced by Bauer [Kinet. Relat. Models 11 (2018), 25–42] to approximate the relativistic Vlasov-Maxwell system, a fundamental model of dynamics of collisionless plasma. We obtain the global existence of solutions and optimal pointwise decay estimates of the charge densities and the electrostatic potential to this system for small initial data without any compact support assumptions. To prove our results, we mainly use the modified vector field method and a bootstrap method. There are two main novelties in our arguments: we introduce new modified functions of modified vector fields to control the troublesome terms involving <span>\\(D^{[3]}(t)\\)</span> since it leads to loss an order derivative, and we raise a new bootstrap assumption and carry out new bootstrap arguments.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence and Sharp Decay Estimates of Classical Solutions to the Vlasov-Poisson System with Radiation Damping\",\"authors\":\"Fucai Li,&nbsp;Man Wu\",\"doi\":\"10.1007/s10955-025-03484-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider the two-species Vlasov-Poisson system with a radiation damping term <span>\\\\(D^{[3]}(t)\\\\)</span> in the whole space <span>\\\\(\\\\mathbb {R}^3\\\\)</span>, which was introduced by Bauer [Kinet. Relat. Models 11 (2018), 25–42] to approximate the relativistic Vlasov-Maxwell system, a fundamental model of dynamics of collisionless plasma. We obtain the global existence of solutions and optimal pointwise decay estimates of the charge densities and the electrostatic potential to this system for small initial data without any compact support assumptions. To prove our results, we mainly use the modified vector field method and a bootstrap method. There are two main novelties in our arguments: we introduce new modified functions of modified vector fields to control the troublesome terms involving <span>\\\\(D^{[3]}(t)\\\\)</span> since it leads to loss an order derivative, and we raise a new bootstrap assumption and carry out new bootstrap arguments.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 8\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03484-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03484-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑由Bauer [Kinet]引入的全空间\(\mathbb {R}^3\)中具有辐射阻尼项\(D^{[3]}(t)\)的两种Vlasov-Poisson系统。有关系。模型11(2018),25-42]来近似相对论性Vlasov-Maxwell系统,这是无碰撞等离子体动力学的基本模型。在没有任何紧支持假设的情况下,我们得到了该系统在初始数据小的情况下电荷密度和静电势的全局解的存在性和最优点向衰减估计。为了证明我们的结果,我们主要使用了修正向量场法和自举法。在我们的论证中有两个主要的新颖之处:我们引入了新的修正向量场的修正函数来控制涉及\(D^{[3]}(t)\)的麻烦项,因为它会导致一个阶导数的损失;我们提出了一个新的自举假设并进行了新的自举论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Sharp Decay Estimates of Classical Solutions to the Vlasov-Poisson System with Radiation Damping

In this paper we consider the two-species Vlasov-Poisson system with a radiation damping term \(D^{[3]}(t)\) in the whole space \(\mathbb {R}^3\), which was introduced by Bauer [Kinet. Relat. Models 11 (2018), 25–42] to approximate the relativistic Vlasov-Maxwell system, a fundamental model of dynamics of collisionless plasma. We obtain the global existence of solutions and optimal pointwise decay estimates of the charge densities and the electrostatic potential to this system for small initial data without any compact support assumptions. To prove our results, we mainly use the modified vector field method and a bootstrap method. There are two main novelties in our arguments: we introduce new modified functions of modified vector fields to control the troublesome terms involving \(D^{[3]}(t)\) since it leads to loss an order derivative, and we raise a new bootstrap assumption and carry out new bootstrap arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信