带三角形函数的半度量空间中四边形的周界收缩原理

IF 0.6 3区 数学 Q3 MATHEMATICS
R. K. Bisht
{"title":"带三角形函数的半度量空间中四边形的周界收缩原理","authors":"R. K. Bisht","doi":"10.1007/s10474-025-01539-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the perimetric contraction principle for quadrilaterals, a four-point extension of the Banach contraction principle, within the framework of semimetric spaces using triangle functions introduced by M. Bessenyei and Zs. Páles. We provide new insights into the fixed point theorem for perimetric contractions on quadrilaterals, demonstrating its applicability beyond metric spaces to include ultrametric spaces and distance spaces with power triangle functions. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"276 - 289"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perimetric contraction principle on quadrilaterals in semimetric spaces with triangle functions\",\"authors\":\"R. K. Bisht\",\"doi\":\"10.1007/s10474-025-01539-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the perimetric contraction principle for quadrilaterals, a four-point extension of the Banach contraction principle, within the framework of semimetric spaces using triangle functions introduced by M. Bessenyei and Zs. Páles. We provide new insights into the fixed point theorem for perimetric contractions on quadrilaterals, demonstrating its applicability beyond metric spaces to include ultrametric spaces and distance spaces with power triangle functions. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 1\",\"pages\":\"276 - 289\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01539-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01539-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用M. Bessenyei和Zs引入的三角形函数,研究了半度量空间框架内四边形的周界收缩原理,即Banach收缩原理的四点扩展。就是小巫见大巫了。我们提供了四边形上的不动点定理的新见解,证明了它在度量空间之外的适用性,包括超度量空间和带幂三角函数的距离空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perimetric contraction principle on quadrilaterals in semimetric spaces with triangle functions

This paper investigates the perimetric contraction principle for quadrilaterals, a four-point extension of the Banach contraction principle, within the framework of semimetric spaces using triangle functions introduced by M. Bessenyei and Zs. Páles. We provide new insights into the fixed point theorem for perimetric contractions on quadrilaterals, demonstrating its applicability beyond metric spaces to include ultrametric spaces and distance spaces with power triangle functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信