Clifford单基因Bergman空间上的Bergman算子

IF 1.2 2区 数学 Q2 MATHEMATICS, APPLIED
Karen Avetisyan, Klaus Gürlebeck
{"title":"Clifford单基因Bergman空间上的Bergman算子","authors":"Karen Avetisyan,&nbsp;Klaus Gürlebeck","doi":"10.1007/s00006-025-01401-x","DOIUrl":null,"url":null,"abstract":"<div><p>Weighted Bergman projection operators on the Clifford monogenic Bergman spaces over the real ball of <span>\\({\\mathbb R}^n\\)</span> have been already studied in a paper of Ren and Malonek. We extend and generalize their results by considering more general Bergman nonprojection operators and stating a necessary and sufficient condition for them to be bounded on weighted Lebesgue spaces. Sharp estimates for the weighted monogenic Bergman kernel are also given.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bergman Operators on Clifford Monogenic Bergman Spaces\",\"authors\":\"Karen Avetisyan,&nbsp;Klaus Gürlebeck\",\"doi\":\"10.1007/s00006-025-01401-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weighted Bergman projection operators on the Clifford monogenic Bergman spaces over the real ball of <span>\\\\({\\\\mathbb R}^n\\\\)</span> have been already studied in a paper of Ren and Malonek. We extend and generalize their results by considering more general Bergman nonprojection operators and stating a necessary and sufficient condition for them to be bounded on weighted Lebesgue spaces. Sharp estimates for the weighted monogenic Bergman kernel are also given.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01401-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01401-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Ren和Malonek已经研究了真实球\({\mathbb R}^n\)上Clifford单基因Bergman空间上的加权Bergman投影算子。我们通过考虑更一般的Bergman非投影算子,并给出它们在加权Lebesgue空间上有界的充分必要条件,扩展和推广了它们的结果。给出了加权单基因Bergman核的锐利估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bergman Operators on Clifford Monogenic Bergman Spaces

Weighted Bergman projection operators on the Clifford monogenic Bergman spaces over the real ball of \({\mathbb R}^n\) have been already studied in a paper of Ren and Malonek. We extend and generalize their results by considering more general Bergman nonprojection operators and stating a necessary and sufficient condition for them to be bounded on weighted Lebesgue spaces. Sharp estimates for the weighted monogenic Bergman kernel are also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信