非线性Schrödinger系统的最佳风车分区和风车解

IF 0.9 3区 数学 Q1 MATHEMATICS
Mónica Clapp, Alberto Saldaña, Mayra Soares, Vctor A. Vicente-Bentez
{"title":"非线性Schrödinger系统的最佳风车分区和风车解","authors":"Mónica Clapp,&nbsp;Alberto Saldaña,&nbsp;Mayra Soares,&nbsp;Vctor A. Vicente-Bentez","doi":"10.1007/s10231-024-01534-z","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the existence of a solution to a nonlinear competitive Schrödinger system whose scalar potential tends to a positive constant at infinity with an appropriate rate. This solution has the property that all components are invariant under the action of a group of linear isometries and each component is obtained from the previous one by composing it with some fixed linear isometry. We call it a <i>pinwheel solution</i>. We describe the asymptotic behavior of the least energy pinwheel solutions when the competing parameter tends to zero and to minus infinity. In the latter case the components are segregated and give rise to an optimal <i>pinwheel partition</i> for the Schrödinger equation, that is, a partition formed by invariant sets that are mutually isometric through a fixed isometry.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1443 - 1468"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal pinwheel partitions and pinwheel solutions to a nonlinear Schrödinger system\",\"authors\":\"Mónica Clapp,&nbsp;Alberto Saldaña,&nbsp;Mayra Soares,&nbsp;Vctor A. Vicente-Bentez\",\"doi\":\"10.1007/s10231-024-01534-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the existence of a solution to a nonlinear competitive Schrödinger system whose scalar potential tends to a positive constant at infinity with an appropriate rate. This solution has the property that all components are invariant under the action of a group of linear isometries and each component is obtained from the previous one by composing it with some fixed linear isometry. We call it a <i>pinwheel solution</i>. We describe the asymptotic behavior of the least energy pinwheel solutions when the competing parameter tends to zero and to minus infinity. In the latter case the components are segregated and give rise to an optimal <i>pinwheel partition</i> for the Schrödinger equation, that is, a partition formed by invariant sets that are mutually isometric through a fixed isometry.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1443 - 1468\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01534-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01534-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

建立了一类非线性竞争系统Schrödinger的解的存在性,该系统的标量势在无穷远处以适当的速率趋于正常数。该解具有在一组线性等距作用下所有分量不变的性质,并且每个分量都是由前一个分量与某个固定的线性等距组合而成的。我们称之为风车式解决方案。我们描述了当竞争参数趋向于零和负无穷时最小能量风车解的渐近行为。在后一种情况下,组件被分离,并产生Schrödinger方程的最优风车划分,即由通过固定等距相互等距的不变集合形成的划分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal pinwheel partitions and pinwheel solutions to a nonlinear Schrödinger system

We establish the existence of a solution to a nonlinear competitive Schrödinger system whose scalar potential tends to a positive constant at infinity with an appropriate rate. This solution has the property that all components are invariant under the action of a group of linear isometries and each component is obtained from the previous one by composing it with some fixed linear isometry. We call it a pinwheel solution. We describe the asymptotic behavior of the least energy pinwheel solutions when the competing parameter tends to zero and to minus infinity. In the latter case the components are segregated and give rise to an optimal pinwheel partition for the Schrödinger equation, that is, a partition formed by invariant sets that are mutually isometric through a fixed isometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信