CoNiV中熵合金的热变形行为:本构模型、卷积神经网络、热加工图和显微组织演化

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Biao Zhang, Yuntian Du, Huishuang Jia, Yuanyi Zhou, Liguang Wang, Minghe Zhang, Yunli Feng, Weimin Gao, Ning Xu
{"title":"CoNiV中熵合金的热变形行为:本构模型、卷积神经网络、热加工图和显微组织演化","authors":"Biao Zhang,&nbsp;Yuntian Du,&nbsp;Huishuang Jia,&nbsp;Yuanyi Zhou,&nbsp;Liguang Wang,&nbsp;Minghe Zhang,&nbsp;Yunli Feng,&nbsp;Weimin Gao,&nbsp;Ning Xu","doi":"10.1007/s40195-025-01885-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy (MEA) in the temperature range of 950–1100 °C and strain rates of 0.001–1 s<sup>−1</sup>. The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions. The predictive capability of both models was assessed using the coefficients of determination (<i>R</i><sup>2</sup>), average absolute relative error (AARE), and root mean square error (RMSE). The findings show that the osprey optimization algorithm convolutional neural network (OOA-CNN) model outperforms the Arrhenius model, achieving a high <i>R</i><sup>2</sup> value of 0.99959 and lower AARE and RMSE values. The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains. Finally, combining the processing map and microstructure characterization, the ideal processing domain was identified as 1100 °C at strain rates of 0.01–0.1 s<sup>−1</sup>. This study provided key insights into optimizing the hot working process of CoNiV MEA.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 8","pages":"1275 - 1292"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution\",\"authors\":\"Biao Zhang,&nbsp;Yuntian Du,&nbsp;Huishuang Jia,&nbsp;Yuanyi Zhou,&nbsp;Liguang Wang,&nbsp;Minghe Zhang,&nbsp;Yunli Feng,&nbsp;Weimin Gao,&nbsp;Ning Xu\",\"doi\":\"10.1007/s40195-025-01885-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy (MEA) in the temperature range of 950–1100 °C and strain rates of 0.001–1 s<sup>−1</sup>. The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions. The predictive capability of both models was assessed using the coefficients of determination (<i>R</i><sup>2</sup>), average absolute relative error (AARE), and root mean square error (RMSE). The findings show that the osprey optimization algorithm convolutional neural network (OOA-CNN) model outperforms the Arrhenius model, achieving a high <i>R</i><sup>2</sup> value of 0.99959 and lower AARE and RMSE values. The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains. Finally, combining the processing map and microstructure characterization, the ideal processing domain was identified as 1100 °C at strain rates of 0.01–0.1 s<sup>−1</sup>. This study provided key insights into optimizing the hot working process of CoNiV MEA.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":\"38 8\",\"pages\":\"1275 - 1292\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-025-01885-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01885-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了CoNiV中熵合金(MEA)在950 ~ 1100℃、应变速率为0.001 ~ 1 s−1范围内的热变形行为和显微组织演变。建立了Arrhenius模型和机器学习模型来预测不同条件下的流动应力。采用决定系数(R2)、平均绝对相对误差(AARE)和均方根误差(RMSE)评估两种模型的预测能力。结果表明,鱼鹰优化算法卷积神经网络(OOA-CNN)模型优于Arrhenius模型,R2值较高,达到0.99959,AARE和RMSE值较低。利用OOA-CNN模型预测的流变应力,生成不同应变下的功率耗散图和失稳图。最后,结合加工图和微观组织表征,确定了理想的加工区域为1100℃,应变速率为0.01 ~ 0.1 s−1。该研究为优化CoNiV MEA的热加工工艺提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hot Deformation Behavior of CoNiV Medium-Entropy Alloy: Constitutive Model, Convolutional Neural Network, Hot Processing Map, and Microstructure Evolution

This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy (MEA) in the temperature range of 950–1100 °C and strain rates of 0.001–1 s−1. The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions. The predictive capability of both models was assessed using the coefficients of determination (R2), average absolute relative error (AARE), and root mean square error (RMSE). The findings show that the osprey optimization algorithm convolutional neural network (OOA-CNN) model outperforms the Arrhenius model, achieving a high R2 value of 0.99959 and lower AARE and RMSE values. The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains. Finally, combining the processing map and microstructure characterization, the ideal processing domain was identified as 1100 °C at strain rates of 0.01–0.1 s−1. This study provided key insights into optimizing the hot working process of CoNiV MEA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信