{"title":"摩擦弹性体接触中剪切诱导各向异性面积减小的解析解","authors":"Mingzhu Xu, Mengru Zhang, Weiting Chen, Ya-Pu Zhao","doi":"10.1007/s11433-025-2680-4","DOIUrl":null,"url":null,"abstract":"<div><p>Shear-induced contact area reduction is a common phenomenon across scales. The corresponding contact morphology controls almost all the macroscopic features of the interface, including adhesion, wear, viscoelastic properties, stiffness, and even electric resistance. It is a long-standing challenge to predict the contact morphology of nonlinear soft elastomer contact since there has been no available analytical solution. The work presented in this paper aims to fill the blank. Here, we first establish a new framework for contact morphology, which involves two evolution equations of the contact boundary. The framework decouples nonlinear contact kinematics and contact forces to formulate the corresponding initial-value problem in a modular approach. Based on this, we present analytical solutions to the shear-induced anisotropic area reduction in elastomer contact by using the method of undetermined coefficient and Boussinesq type models. We theoretically demonstrate that the shear-induced normal deformation (originated from Poynting’s effect), but not tangential deformation, governs the anisotropic area reduction. Also, the power laws of the reduction parameters for both contact area and size are provided. The results show quantitative agreement with recent simulations and experiments. Our approaches to the contact morphology of frictional contact involving soft materials may shed some light on the theoretical modeling of large deformation contact mechanics.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 8","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solutions to the shear-induced anisotropic area reduction in frictional elastomer contact\",\"authors\":\"Mingzhu Xu, Mengru Zhang, Weiting Chen, Ya-Pu Zhao\",\"doi\":\"10.1007/s11433-025-2680-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shear-induced contact area reduction is a common phenomenon across scales. The corresponding contact morphology controls almost all the macroscopic features of the interface, including adhesion, wear, viscoelastic properties, stiffness, and even electric resistance. It is a long-standing challenge to predict the contact morphology of nonlinear soft elastomer contact since there has been no available analytical solution. The work presented in this paper aims to fill the blank. Here, we first establish a new framework for contact morphology, which involves two evolution equations of the contact boundary. The framework decouples nonlinear contact kinematics and contact forces to formulate the corresponding initial-value problem in a modular approach. Based on this, we present analytical solutions to the shear-induced anisotropic area reduction in elastomer contact by using the method of undetermined coefficient and Boussinesq type models. We theoretically demonstrate that the shear-induced normal deformation (originated from Poynting’s effect), but not tangential deformation, governs the anisotropic area reduction. Also, the power laws of the reduction parameters for both contact area and size are provided. The results show quantitative agreement with recent simulations and experiments. Our approaches to the contact morphology of frictional contact involving soft materials may shed some light on the theoretical modeling of large deformation contact mechanics.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 8\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2680-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2680-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical solutions to the shear-induced anisotropic area reduction in frictional elastomer contact
Shear-induced contact area reduction is a common phenomenon across scales. The corresponding contact morphology controls almost all the macroscopic features of the interface, including adhesion, wear, viscoelastic properties, stiffness, and even electric resistance. It is a long-standing challenge to predict the contact morphology of nonlinear soft elastomer contact since there has been no available analytical solution. The work presented in this paper aims to fill the blank. Here, we first establish a new framework for contact morphology, which involves two evolution equations of the contact boundary. The framework decouples nonlinear contact kinematics and contact forces to formulate the corresponding initial-value problem in a modular approach. Based on this, we present analytical solutions to the shear-induced anisotropic area reduction in elastomer contact by using the method of undetermined coefficient and Boussinesq type models. We theoretically demonstrate that the shear-induced normal deformation (originated from Poynting’s effect), but not tangential deformation, governs the anisotropic area reduction. Also, the power laws of the reduction parameters for both contact area and size are provided. The results show quantitative agreement with recent simulations and experiments. Our approaches to the contact morphology of frictional contact involving soft materials may shed some light on the theoretical modeling of large deformation contact mechanics.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.