分形时空场方程的表述与量化

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Alireza Khalili Golmankhaneh, Roman Pasechnik, Palle E. T. Jørgensen, Shuming Li
{"title":"分形时空场方程的表述与量化","authors":"Alireza Khalili Golmankhaneh,&nbsp;Roman Pasechnik,&nbsp;Palle E. T. Jørgensen,&nbsp;Shuming Li","doi":"10.1007/s10773-025-06052-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the framework of fractal calculus and its application to classical and quantum field theories. We begin with a brief overview of the fundamental concepts of fractal calculus. Building on this foundation, we introduce the formulation of the classical scalar field within a fractal space. The study is then extended to the quantization of the fractal field, where we examine how fractal geometry influences the quantization process. As a key example, we consider the fractal version of the Klein-Gordon equation and analyze how the fractal dimension affects the behavior of the field. Graphical representations are provided to illustrate the impact of fractal dimensions on the solutions. The paper concludes with a summary of the results and their potential implications for future research in fractal field theory.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and Quantization of Field Equations on Fractal Space-Time\",\"authors\":\"Alireza Khalili Golmankhaneh,&nbsp;Roman Pasechnik,&nbsp;Palle E. T. Jørgensen,&nbsp;Shuming Li\",\"doi\":\"10.1007/s10773-025-06052-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the framework of fractal calculus and its application to classical and quantum field theories. We begin with a brief overview of the fundamental concepts of fractal calculus. Building on this foundation, we introduce the formulation of the classical scalar field within a fractal space. The study is then extended to the quantization of the fractal field, where we examine how fractal geometry influences the quantization process. As a key example, we consider the fractal version of the Klein-Gordon equation and analyze how the fractal dimension affects the behavior of the field. Graphical representations are provided to illustrate the impact of fractal dimensions on the solutions. The paper concludes with a summary of the results and their potential implications for future research in fractal field theory.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 7\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06052-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06052-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了分形微积分的框架及其在经典场论和量子场论中的应用。我们从分形微积分基本概念的简要概述开始。在此基础上,我们引入了分形空间中经典标量场的表达式。然后将研究扩展到分形场的量化,在那里我们研究了分形几何如何影响量化过程。作为一个关键的例子,我们考虑了Klein-Gordon方程的分形版本,并分析了分形维数如何影响场的行为。用图形表示来说明分形维数对解的影响。最后,对研究结果进行了总结,并对今后分形场理论的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation and Quantization of Field Equations on Fractal Space-Time

This paper explores the framework of fractal calculus and its application to classical and quantum field theories. We begin with a brief overview of the fundamental concepts of fractal calculus. Building on this foundation, we introduce the formulation of the classical scalar field within a fractal space. The study is then extended to the quantization of the fractal field, where we examine how fractal geometry influences the quantization process. As a key example, we consider the fractal version of the Klein-Gordon equation and analyze how the fractal dimension affects the behavior of the field. Graphical representations are provided to illustrate the impact of fractal dimensions on the solutions. The paper concludes with a summary of the results and their potential implications for future research in fractal field theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信