增加偏差可能比增加权重更有效

IF 1.3 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Carlo Metta, Marco Fantozzi, Andrea Papini, Gianluca Amato, Matteo Bergamaschi, Andrea Fois, Silvia Giulia Galfrè, Alessandro Marchetti, Michelangelo Vegliò, Maurizio Parton, Francesco Morandin
{"title":"增加偏差可能比增加权重更有效","authors":"Carlo Metta,&nbsp;Marco Fantozzi,&nbsp;Andrea Papini,&nbsp;Gianluca Amato,&nbsp;Matteo Bergamaschi,&nbsp;Andrea Fois,&nbsp;Silvia Giulia Galfrè,&nbsp;Alessandro Marchetti,&nbsp;Michelangelo Vegliò,&nbsp;Maurizio Parton,&nbsp;Francesco Morandin","doi":"10.1007/s11634-025-00649-2","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model’s performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code (CurioSAI in Increasing biases can be more efficient than increasing weights, 2023. https://github.com/CuriosAI/dac-dev).\n</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"19 classification and related methods”","pages":"437 - 468"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing biases can be more efficient than increasing weights\",\"authors\":\"Carlo Metta,&nbsp;Marco Fantozzi,&nbsp;Andrea Papini,&nbsp;Gianluca Amato,&nbsp;Matteo Bergamaschi,&nbsp;Andrea Fois,&nbsp;Silvia Giulia Galfrè,&nbsp;Alessandro Marchetti,&nbsp;Michelangelo Vegliò,&nbsp;Maurizio Parton,&nbsp;Francesco Morandin\",\"doi\":\"10.1007/s11634-025-00649-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model’s performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code (CurioSAI in Increasing biases can be more efficient than increasing weights, 2023. https://github.com/CuriosAI/dac-dev).\\n</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"19 classification and related methods”\",\"pages\":\"437 - 468\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-025-00649-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-025-00649-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的神经网络计算单元,它具有多偏差的特征,挑战了传统的感知器结构。该单元强调了当信息从一个单元传递到下一个单元时保持未损坏信息的重要性,并在稍后的过程中对每个单元应用具有专门偏差的激活函数。通过实证和理论分析,我们表明,通过关注增加偏差而不是权重,有可能显著增强神经网络模型的性能。这种方法为优化神经网络中的信息流提供了另一种视角。参见源代码(CurioSAI,增加偏差比增加权重更有效,2023)。https://github.com/CuriosAI/dac-dev)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing biases can be more efficient than increasing weights

We introduce a novel computational unit for neural networks that features multiple biases, challenging the traditional perceptron structure. This unit emphasizes the importance of preserving uncorrupted information as it is passed from one unit to the next, applying activation functions later in the process with specialized biases for each unit. Through both empirical and theoretical analyses, we show that by focusing on increasing biases rather than weights, there is potential for significant enhancement in a neural network model’s performance. This approach offers an alternative perspective on optimizing information flow within neural networks. See source code (CurioSAI in Increasing biases can be more efficient than increasing weights, 2023. https://github.com/CuriosAI/dac-dev).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信