利用先进的锌基金属有机骨架材料进行燃烧后碳捕获和转化:综述

IF 6.2 4区 工程技术 Q3 ENERGY & FUELS
Yuhui Jin, Feichao Li, Yun Zheng, Wenqiang Zhang, Shufan Wang, Wei Yan, Bo Yu, Jiujun Zhang
{"title":"利用先进的锌基金属有机骨架材料进行燃烧后碳捕获和转化:综述","authors":"Yuhui Jin,&nbsp;Feichao Li,&nbsp;Yun Zheng,&nbsp;Wenqiang Zhang,&nbsp;Shufan Wang,&nbsp;Wei Yan,&nbsp;Bo Yu,&nbsp;Jiujun Zhang","doi":"10.1007/s11708-025-1009-1","DOIUrl":null,"url":null,"abstract":"<div><p>Developing environmentalyl friendly and energy-efficient CO<sub>2</sub> adsorbents for post-combustion capture is a critical step toward achieving toward carbon neutrality. While aqueous amines and metal oxides have play pivotal roles in CO<sub>2</sub> capture, their application is limited by issues such as secondary pollution and high energy consumption. In contrast, Zn-based metal-organic frameworks (Zn-based MOFs) have emerged as a green alternative, offering low toxicity reduced regeneration temperatures, and high efficiency in both CO<sub>2</sub> adsorption and catalytic conversion into valuable fuels and chemicals. This mini review begins with a general introduction to MOFs in CO<sub>2</sub> capture and conversion, followed by an overview of early studies on Zn-based MOFs for CO<sub>2</sub> capture. It then summarizes recent research advancements in Zn-based MOFs for integrated CO<sub>2</sub> capture and conversion. Finally, it discusses key challenges and future research directions for post-combustion CO<sub>2</sub> capture and conversion using Zn-based MOFs.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"300 - 311"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-combustion carbon capture and conversion using advanced materials of Zn-based metal-organic frameworks: A mini review\",\"authors\":\"Yuhui Jin,&nbsp;Feichao Li,&nbsp;Yun Zheng,&nbsp;Wenqiang Zhang,&nbsp;Shufan Wang,&nbsp;Wei Yan,&nbsp;Bo Yu,&nbsp;Jiujun Zhang\",\"doi\":\"10.1007/s11708-025-1009-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing environmentalyl friendly and energy-efficient CO<sub>2</sub> adsorbents for post-combustion capture is a critical step toward achieving toward carbon neutrality. While aqueous amines and metal oxides have play pivotal roles in CO<sub>2</sub> capture, their application is limited by issues such as secondary pollution and high energy consumption. In contrast, Zn-based metal-organic frameworks (Zn-based MOFs) have emerged as a green alternative, offering low toxicity reduced regeneration temperatures, and high efficiency in both CO<sub>2</sub> adsorption and catalytic conversion into valuable fuels and chemicals. This mini review begins with a general introduction to MOFs in CO<sub>2</sub> capture and conversion, followed by an overview of early studies on Zn-based MOFs for CO<sub>2</sub> capture. It then summarizes recent research advancements in Zn-based MOFs for integrated CO<sub>2</sub> capture and conversion. Finally, it discusses key challenges and future research directions for post-combustion CO<sub>2</sub> capture and conversion using Zn-based MOFs.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 3\",\"pages\":\"300 - 311\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-1009-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-1009-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

开发环境友好和节能的二氧化碳吸附剂用于燃烧后捕获是实现碳中和的关键一步。虽然水胺和金属氧化物在二氧化碳捕获中起着关键作用,但它们的应用受到二次污染和高能耗等问题的限制。相比之下,锌基金属有机骨架(Zn-based metal-organic frameworks,简称Zn-based MOFs)已经成为一种绿色替代品,它具有低毒性、低再生温度、高效的二氧化碳吸附和催化转化为有价值的燃料和化学品的能力。本文首先介绍了mof在二氧化碳捕获和转化中的应用,然后概述了锌基mof用于二氧化碳捕获的早期研究。总结了近年来锌基mof在二氧化碳捕获和转化方面的研究进展。最后,讨论了利用锌基mof进行燃烧后CO2捕集与转化的关键挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Post-combustion carbon capture and conversion using advanced materials of Zn-based metal-organic frameworks: A mini review

Developing environmentalyl friendly and energy-efficient CO2 adsorbents for post-combustion capture is a critical step toward achieving toward carbon neutrality. While aqueous amines and metal oxides have play pivotal roles in CO2 capture, their application is limited by issues such as secondary pollution and high energy consumption. In contrast, Zn-based metal-organic frameworks (Zn-based MOFs) have emerged as a green alternative, offering low toxicity reduced regeneration temperatures, and high efficiency in both CO2 adsorption and catalytic conversion into valuable fuels and chemicals. This mini review begins with a general introduction to MOFs in CO2 capture and conversion, followed by an overview of early studies on Zn-based MOFs for CO2 capture. It then summarizes recent research advancements in Zn-based MOFs for integrated CO2 capture and conversion. Finally, it discusses key challenges and future research directions for post-combustion CO2 capture and conversion using Zn-based MOFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信